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Abstract 
 

Data deduplication works on eliminating redundant data and reducing storage consumption. 

Nowadays more data generated and it was stored in the cloud repeatedly, due to this large 

volume of storage will be consumed. Data deduplication tries to reduce data volumes disk space 

and network bandwidth can be to reduce costs and energy consumption for running storage 

systems. In the data deduplication method, data broken into small size of chunk or block. Hash 

ID will be calculated for all the blocks then it’s compared with existing blocks for duplication. 

Blocks may be fixed or variable size, compared with a fixed size of block variable size chunking 

gives a better result. So the chunking process is the initial task of deduplication to get an optimal 

result. In this paper, we discussed various content defined chunking algorithms and their 

performance based on chunking properties like chunking speed, processing time, and 

throughput. 
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Introduction 

 

Now a day’s amount data rapidly increasing in the cloud environment due to the usage of 

the internet, Smartphone’s and social networking platforms like Facebook, Instagram, and 

Twitter, etc. as per the report of International Data Corporation (IDC) the data volume will 

be reached 35ZB by Kaur, R, 2020. Huge data on the storage system is very difficult to 

handle so that they try to remove the redundant data from the cloud environment to improve 
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storage efficiency. Deduplication is the most important technique for removing unnecessary 

duplicates data and ensuring unique contents are stored in the storage systems. 

Deduplication system methods are varying from one storage environment to another 

proposed by Paulo, J, 2014. Primary system deduplication achieved 68% efficiency but in 

the secondary storage system 83%, so the backup deduplication system dramatically 

increased their storage efficiency proposed by Viji, D., & Revathy, S, 2019. 

 

Data deduplication techniques is an elegant data compression technique to avoid replicated 

data stored in the storage environment. This technique identifies the duplicate data and 

stores only one unique data, duplicated data are a pointed through the pointer of unique 

data. The main focus of deduplication techniques to increase storage efficiency in the cloud 

environment. Different types of data are involved in storage systems like text data, and 

multimedia data. Every data has individual storage formats and different properties. Based 

on the type of data, deduplication methods also differ to identify and removing replicated 

content. So the type of data is the major factor for developing deduplication methods. 

 

Based on the content of information deduplication methods divided into major two types 

data deduplication and multimedia deduplication. Data deduplication contains the text 

information, multimedia contains image and video. Fig. 1 represents the data deduplication 

process replicated blocks are removed and stored unique blocks by Sanyal, S. (2018). Data 

deduplication can be done in two ways file-level and block-level deduplication. File-level 

deduplication of the whole content of the file compared with another file using the hash 

value by Li, J., et al., (2018). It is a very simple method but this way of deduplication 

method not providing high efficiency. Block-level deduplication achieves better efficiency, 

in this entire file broken into blocks or chunks. Blocking is crucial to speed-up the 

deduplication of large datasets by Lavanya, R. et al., (2017). This procedure is also named 

as chunking by Nguyen, Q.N, 2018. Fig 1 shows the entire file divided into four different 

blocks B1, B2, B3, and B4. 

 
Fig. 1 Data deduplication process 
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A. Advantages and Disadvantages of Deduplication 

 

R. Kaur et al, 2018 highlighted the major advantages and disadvantages of deduplication 

techniques. 

 

Advantages 

• Decrease storage space. 

• Upgrade the network bandwidth 

• Saves energy requirement 

• Reduction of the overall cost 

 

Disadvantages 

• A deduplication technique needs some additional resources. 

• Due to hash collision leads to loss of accuracy and consistency of data 

• Privacy and security 

• Reduction of duplicate copies of data will affect the availability of a storage system. 

 

B. Deduplication Step by Step Procedure 

 

 
Fig. 2 Deduplication process 

 

Fig 2 shows the deduplication system workflow of text file divided into fixed or variable 

size blocks that are called chunking. After chunking for each block, the hash value going to 

calculated in this process known as fingerprinting. The next step indexing of fingerprints, 

when user data grows the total size of fingerprints also increased due to this the problem 

will arise in how to store and manage fingerprints efficiently. Compare the hash value of 

chunks with the existing one. If matches found duplicate chunk removed else new chunk 

added to index memory this is also called data compression proposed by Nandakumar, T., 

2020. Finally, the stored data need to maintain reliability and security proposed by Draghi, 

J., 2008. 
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Categorization of Chunking Algorithm 

 

Chunking processes applied in various disciplines, such as networking proposed by Youn, 

T.Y, 2018, storage system by Zhou, Y, 2018, data synchronization system, cache system, 

text recognition, and so on proposed by Lavanya, R, et al., (2017). The chunking process is 

further classified as: (i) Entire file processing and (ii) Block-wise processing. Entire file 

processing is means full file is considered as a single block, whereas block processing, the 

file divided into several blocks. In entire file chunking comparisons made between the files, 

but in block chunking comparisons made within the file as well as with other files. When 

dividing a file into blocks or chunks, size can be the fixed size or variable size. The major 

difficulty is to determine how the chunk or block size should be, either small or large. The 

chunk or block size is too small it will give better results for the small size of a file, whereas 

for the huge files this will create performance overhead and indexing problem. If the chunks 

are large size, it leads to the problem of finding identical ones and reducing the capability 

of deduplication methods by Youn, T, 2018. So, an optimal chunking algorithm is essential 

to give better efficiency. 

 

 
Fig 3. Fixed vs Variable size blocks 

 

Fig 3 shows the fixed and variable size chunking process. Fixed size chunking is very 

simple and fast, when a byte insert into the file or delete from the file, all the blocks will 

become completely distinct blocks then it fails to identify duplicate chunks. Fig 3 clearly 

shows File 1 having A, B, C, and D blocks when inserting a single byte then it is treated as 

a new file all the chunks are entirely different. So a fixed size chunking process not reliable 

when inserting or deleting. Content defined chunking (CDC) resolved this issue with the 

help of variable size chunking. CDC algorithms identify the cut point using the internal 

features of the file. So that, when byte shifting or insertion only a few chunks are affected, 

the CDC has better performance of identifying duplicate chunks compared with fixed sized 

chunking. Variable-length block deduplication gives better granularity control and easy to 

insert or delete in block. Content defined chunking algorithm permits to use of many 

methods to find the cut-point like hashes, bytes and neural networks or some machine 
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learning algorithms. When using neural networks and machine learning algorithms gives 

computational overhead compared with hashes and bytes to find a cut point. 

 

Background 

 

In this section we discussed the background of deduplication and variable size chunking, 

related work, and their limitations. 

 

A. Deduplication: Background 

 

Deduplication categorizing based on time, level, and location by Zhang, C, 2020. Based on 

the time it is further classified as inline deduplication and offline deduplication. Inline 

deduplication needs only less storage compared with offline deduplication because inline 

deduplication does not store data before processing. Anyway, computation takes time which 

may be affecting the overall performance. On the other hand, offline deduplication will 

store data for a short period of time it will lead to some problems when storage is full. 

Level-based deduplication is classified as byte, block, and file-level. Byte level 

deduplication methods compared with bytes and remove replicated bytes. When block-level 

deduplication comparisons are made between blocks or chunks. Location-based 

deduplication either source-based or target-based, source-based deduplication process done 

at the client side which means before uploading data to the server. This will decrease the 

drastic bandwidth cost. Server-based deduplication is done at the server-side, this utilizing 

more bandwidth. 

 

The fine-grained defragmentation approach used variable size of chunking instead of fixed 

size, to achieve exact identification of unique data and almost remove fragmented data. The 

fine-grained defragmentation method not only removed fragmented data and also increases 

the restore performance by 14 to 329 percentages at the same time reduce the duplicate date 

by 25 to 87 percent by Hirsch, M, 2016. A systematic deduplication method should satisfy 

the following criteria (i) Less number of hash calculation, (ii) Minimal amount of hash 

comparisons, (iii) Best block size selection strategy, and (iv) Fast retrieval. 

 

B. Content Defined Chunking: Background 

 

Fixed-size chunking process lost their efficiency when a byte shifting or inserting, to solve 

this byte shifting problem content defined variable-length algorithm was proposed by 

Widodo, R.N, 2017, files are read as a chunks are created using Robin fingerprint. This 

algorithm is very oldest content defined chunking algorithm. Robin rolling hash is used to 

find the cut-off point. Cut-off point set on if the hash value of the sliding window fulfills 
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the predefined condition. Earlier Rabin algorithm was the most popular algorithm to 

calculate the hash value of sliding window in content defined chunking (CDC) by 

Ponnusamy, V, 2020. Rabin algorithms have computational overhead, time-consuming, and 

byte shifting problem. Rabin fingerprint has an issue with the size variance of chunks by 

Karthick, T, 2018. Another CDC algorithm is the Local Maximum Chunking method 

(LMC) by Anandan, M, 2020. Instead of calculating Robin fingerprint LMC finds the 

maximum value byte using a sliding window. LMC can overcome byte shifting problem. 

Slow chunking performance. 

 

To improve the efficiency of LMC, Asymmetric Extremum (AE) algorithm was proposed 

by Tian, W, 2017. The working principle of AE and LMC algorithm Similar, but AE has 

two different windows variable-sized window and a fixed window. The number of 

comparisons significantly reduced and eliminating low entropy strings, more expensive and 

it’s affected by byte shifting problem. A new algorithm Rapid Asymmetric Maximum 

Algorithm (RAM) was proposed to improve the chunking throughput of AE by Tan, Y, 

2017. RAM has low computational overhead and high speed of the chunking process. RAM 

also reduces the overall cost of the chunking process compared with the AE method. 

 

To enhance the essential characteristics of chunking algorithms a Minimal Incremental 

Interval (MII) was proposed, it can able to tolerate byte shifting by Zhang, Y, 2015. MII 

brings the issue of very hard to adjust the average chunk size and efficiency of the algorithm 

not up to the level. C. Zhang et al, 2015 identifies the drawback of MII and introduced a 

new algorithm Parity Check of Interval (PCI) can able to tolerate byte shifting problem, and 

the processing speed PCI is notably less than other algorithms. The drawback of PCI is the 

increasing transmission compression rate. 

 

C. Motivation 

 

The chunk or block size is too small it will give better results for the small size of a file, 

whereas for the huge files this will create performance overhead and indexing problems. If 

the chunks are large size, it leads to the problem of finding identical ones and reducing the 

capability of deduplication methods proposed by Widodo, R.N, 2017. So, an optimal 

chunking algorithm is essential to give better efficiency. 

 

1. Performance issue: Mostly offline deduplication method applied in secondary storage, but 

it needs additional short-term storage space and also raises the I/O bandwidth. There is a 

need to evolve well organized inline deduplication method with the effective use of 

resources in a cloud by Saharan, S, 2020. 
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2. Selecting optimal chunk size: Smaller chunks will save space, but it will generate more 

hash values. A larger chunk size decreases the hash calculation but it decreases the 

capacity of the deduplication concept. So, a systematic method needs to calculate the 

optimum size of chunks. 

 

Exploration of Chunking Algorithm 

 

This section discusses the various content defined chunking algorithms performance and its 

deficiencies. 

 

A. Rabin based Algorithm 

 

Robin algorithm perceives the cut point done by rolling hash. Rabin fingerprint 

implemented using polynomial over a finite field. When the window slides old fingerprint 

can be utilized to compute a new one proposed by Tan, Y, 2018. 

 

The data stream defined as, M.O. Rabin (1981). 

 

𝑅𝑎𝑏𝑖𝑛(𝐵1, 𝐵2, … . 𝐵𝑛) = {∑ 𝐵𝑥 
𝑛
𝑥=1 𝑝𝑛−𝑥}𝑚𝑜𝑑 𝐷    (1) 

 

D= Average chunk size 

n = number of bytes in sliding window 

B1, B2, ....., Bn = Byte sequence of data stream 

 

Rabin signature calculated by incrementally from previous value as follows: 

M.O. Rabin (1981). 

 

𝑅𝑎𝑏𝑖𝑛(𝐵𝑖+1,𝐵𝑖+2, … . . 𝐵𝑖+𝑛) =  { ∑ 𝐵𝑥𝑝𝑛−𝑥+𝑖

𝑖+𝑛

𝑥=𝑖+1

}  𝑚𝑜𝑑 𝐷 

= {[ ∑ 𝐵𝑥𝑝𝑛−𝑥+𝑖−1 − 𝐵𝑖𝑝
𝑛−1

𝑖+𝑛−1

𝑥=𝑖

] 𝑝 + 𝐵𝑖+𝑛} 𝑚𝑜𝑑 𝐷 

{[𝑅𝑎𝑏𝑖𝑛(𝐵𝑖, 𝐵𝑖+1, … , 𝐵𝑖+𝑛−1) − 𝐵𝑖𝑝
𝑛−1]𝑝 + 𝐵𝑖+𝑛}𝑚𝑜𝑑 𝐷    (2) 

 

Rabin hash having some inadequacy like (i) computational overhead, because of it needs 2 

XOR, 1OR, 2 left shifts, and 2 array lookup per byte scanned (ii) Large chunk variance and 

(iii) Miscalculation of duplicate detection. Fig 4 procedure of Rabin chunking algorithm. 
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Fig. 4 Operation of Rabin algorithm 

 

B. Local Maximum Chunking Algorithm (LMC) 

 

LMC was introduced to solve the problem of high chunk variance in the Rabin based 

algorithm proposed by Rabin, M.O, 2018. There is no hash computation required as like 

Rabin algorithm; LMC used a fixed symmetric window and byte value of files to detect cut 

points. If the maximum value byte is placed in between two fixed-sized windows, then the 

cut-off point can be fixed at the end of the data window. If not, the data window moved by 

one byte again the procedure will continue till end of the data stream proposed by Bjørner, 

N, 2010. Whenever the data window slides algorithm have to verify all the bytes within the 

window. So the chunking process will become slow. Computational overhead is intended 

by time consumption to run the algorithm; the LMC algorithm having four addition, two 

assignment, and three comparisons. Fig 5 procedure of LMC. 

 

 
Fig. 5 Operation of LMC algorithm 

 

C. Asymmetric Extremum Algorithm (AE) 

 

AE developed to overcome the drawbacks in LMC and Rabin, 1981. AE gains high 

performance compared with the existing algorithm, the main reason behind that extreme 

value in an asymmetric window without having any backtracking process. So AE algorithm 

very fast and having smaller chunk variance. AE is a similar process to LMC but it has low 

computational overhead than LMC. AE is done with less comparison to find the cut points. 

 

 
Fig. 6 Operation of AE algorithm 
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Fig 6. Shows the workflow of the AE algorithm, here extreme value or maximum value 

must satisfy the condition of extreme value must be greater than the all the bytes in the 

window left and right, then the cut point decided next byte of the fixed-sized window. In 

the AE algorithm having some deficiencies, whenever insertion, deletion, or any update on 

the data stream; byte shifting process will occur AE has less resistance on byte shifting 

because of the extreme byte value placed in the mid of the chunk. 

 

D. Rapid Asymmetric Maximum Algorithm (RAM) 

 

RAM algorithm used hash less chunking method, using a byte value cut point was 

identified. RAM also follows the same kind of method of AE to find the cut point, this 

algorithm too used two windows like variable size and fixed-size window. But the 

difference is the position of the window placed, at the beginning of the chunk fixed-size 

window next variable size window placed and then maximum value byte. RAM produced 

a better result on throughput compared with other chunking algorithms and also useful for 

client-side deduplication. RAM algorithm having the following comfort, 

 

• Low computational overhead. 

• High chunking throughput. 

• Fastest chunking speed. 

• Reduce the cost of the chunking process. 

 

If the scanned byte greater than the maximum value then a cut point is found. The cut point 

will be appearing on the right side of the fixed-sized window. The process of the RAM 

algorithm is shown in Fig 7. 

 

 
Fig. 7 Operation of RAM algorithm 

 

Chunking Algorithm for Incremental Synchronization 

 

Synchronization techniques are full synchronization and incremental synchronization. Full 

Synchronization means the full real content is replaced with target data. Incremental 

synchronization only changed part of data updated with original content. It reduced the cost 
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and time. First, compare target data with real content to identify mismatch content. This 

section discusses about how MII and PCI chunking algorithm works under incremental 

synchronization. 

 

A. Minimal Incremental Interval (MII) 

 

MII was developed for incremental synchronization between files. Earlier algorithms (AE, 

RAM) Chunks are stored in physical disk, so chunk length is considered as the most 

important factor by Ponnusamy. V, (2020). But in the incremental backup system, the 

chunking algorithm is only utilized to identifying incremental data; it won’t store under the 

physical disk. So chunk length is not an important factor, for incremental synchronization 

chunking algorithm fulfils the criteria ability to manage the byte shifting problem. 

 

MII read the data byte by byte; recent read byte compared with the existing byte. If a current 

byte greater than the existing byte record as a relation < new byte,existing byte>. The 

number of byte values in the data interval marked as len. If the length of the incremental 

interval reaches preset value then a cut point is found. MII chunking algorithm provides a 

better ability to resistance against byte shifting, but performance on chunk size variance 

was very poor, and also the efficiency of an algorithm not good. 

 

B. Parity Check of Interval (PCI) 

 

PCI algorithm overcomes the problem of the MII method. PCI satisfies the condition’s byte 

shifting problem and also can able to locate the changed data exactly in incremental 

synchronization. Minimize the bandwidth cost of transmission but chunking speed 

comparatively less than RAM and AE. 

 

PCI read input as a data stream and data window length = ‘W’, the head point of data 

window set as the first bye of the file. PCI set two preset value length of data window (W=5) 

and the threshold of total number of 1s in binary form (NO1BF) V=34. If the data window 

is filled with NO1BF > the preset value then the cut-off point will be set at end of the data 

window. 

 

Performance Evaluation 

 

In this section, chunking algorithms are compared with others in terms of chunk 

characteristics like chunk speed, number of chunks, throughput, and chunk variance. Chunk 

variance must be less as possible. Table 1 described the dataset. Three dataset generated by 

using Mersenne Twister Pseudo-Random Number Generator. Because Chunking 
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algorithms performance is also based on the type of dataset, and gave a different set of 

output for a different type of dataset. For example, the LMC algorithm performed well in 

the compressed type of file, and the Rabin algorithm works well for network traffic files by 

Widodo, R.N., et al., (2017). Table 2 illustrated processing time for all chunking algorithms. 

Table 1 Dataset 

Dataset Size Generated by 

Data set 1 2GB Mersenne Twister Pseudo-Random Number Generator 

Data set 2 1.5 GB Mersenne Twister Pseudo-Random Number Generator 

Data set 3 1 GB Mersenne Twister Pseudo-Random Number Generator 

Draghi. J, et al., (2008) 

 

Table 2 Processing Time for all Algorithms 

Chunking 

Algorithm 
Data set 1 Data set 2 Data set 3 

 Processing time (ms)  Processing time (ms) Processing time (ms) 

Rabin 2.46 2.11 1.84 

LMC 2.61 2.32 2.11 

AE 1.90 1.45 1.10 

RAM 0.73 0.51 0.33 

PCI 2.40 1.90 1.52 

 

 
Fig. 8 Processing time of different chunking algorithm 

 

Fig 8 shows chunking speed of different algorithms for three different data set. Among all 

these algorithms RAM algorithm highest chunking speed and better performance of 

deduplication. PCI has the best performance in deduplication but it has less processing 

speed. Table 3 specify the number of chunks in each dataset for all chunking algorithm. 
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Table 3 Number of Chunks 

Algorithms Dataset 1 Dataset 2 Dataset 3 

Rabin 1950 1545 982 

LMC 4500 3706 2230 

AE 3578 3604 2148 

RAM 9500 7000 4500 

PCI 9423 6850 4486 

 

Conclusion 

 

In this paper, we have discussed content-defined chunking algorithms for data 

deduplication and how they overcome the limitations of the fixed-size chunking method. 

The main drawback of fixed size chunking was the byte shifting problem, when a byte was 

inserted or deleted at the beginning or middle of the content entire blocks will be changed 

in this method. Variable size chunking or content defined chunking algorithms works based 

on the content and also we analysed all the content defined chunking algorithms 

performance and its limitations. Overall RAM and PCI algorithm performed well in the 

deduplication process but compared with RAM and PCI, RAM takes less processing time 

for chunking and it has low computational overhead and high chunking throughput. 
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