
Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

255 http://www.webology.org

Comparative Analysis for Content Defined Chunking Algorithms in

Data Deduplication

D. Viji

Research Scholar, Department of Computer Science and Engineering, Sathyabama Institute of

Science and Technology, Chennai, India.

E-mail: dviji2k@gmail.com

Dr.S. Revathy

Associate Professor, Department of Information Technology, Sathyabama Institute of Science and

Technology, Chennai, India.

E-mail: ramesh.revathy@gmail.com

Received November 08, 2020; Accepted December 20, 2020

ISSN: 1735-188X

DOI: 10.14704/WEB/V18SI02/WEB18070

Abstract

Data deduplication works on eliminating redundant data and reducing storage consumption.

Nowadays more data generated and it was stored in the cloud repeatedly, due to this large

volume of storage will be consumed. Data deduplication tries to reduce data volumes disk space

and network bandwidth can be to reduce costs and energy consumption for running storage

systems. In the data deduplication method, data broken into small size of chunk or block. Hash

ID will be calculated for all the blocks then it’s compared with existing blocks for duplication.

Blocks may be fixed or variable size, compared with a fixed size of block variable size chunking

gives a better result. So the chunking process is the initial task of deduplication to get an optimal

result. In this paper, we discussed various content defined chunking algorithms and their

performance based on chunking properties like chunking speed, processing time, and

throughput.

Keywords

Data Deduplication, Content-defined Chunking, Cloud Storage System.

Introduction

Now a day’s amount data rapidly increasing in the cloud environment due to the usage of

the internet, Smartphone’s and social networking platforms like Facebook, Instagram, and

Twitter, etc. as per the report of International Data Corporation (IDC) the data volume will

be reached 35ZB by Kaur, R, 2020. Huge data on the storage system is very difficult to

handle so that they try to remove the redundant data from the cloud environment to improve

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

256 http://www.webology.org

storage efficiency. Deduplication is the most important technique for removing unnecessary

duplicates data and ensuring unique contents are stored in the storage systems.

Deduplication system methods are varying from one storage environment to another

proposed by Paulo, J, 2014. Primary system deduplication achieved 68% efficiency but in

the secondary storage system 83%, so the backup deduplication system dramatically

increased their storage efficiency proposed by Viji, D., & Revathy, S, 2019.

Data deduplication techniques is an elegant data compression technique to avoid replicated

data stored in the storage environment. This technique identifies the duplicate data and

stores only one unique data, duplicated data are a pointed through the pointer of unique

data. The main focus of deduplication techniques to increase storage efficiency in the cloud

environment. Different types of data are involved in storage systems like text data, and

multimedia data. Every data has individual storage formats and different properties. Based

on the type of data, deduplication methods also differ to identify and removing replicated

content. So the type of data is the major factor for developing deduplication methods.

Based on the content of information deduplication methods divided into major two types

data deduplication and multimedia deduplication. Data deduplication contains the text

information, multimedia contains image and video. Fig. 1 represents the data deduplication

process replicated blocks are removed and stored unique blocks by Sanyal, S. (2018). Data

deduplication can be done in two ways file-level and block-level deduplication. File-level

deduplication of the whole content of the file compared with another file using the hash

value by Li, J., et al., (2018). It is a very simple method but this way of deduplication

method not providing high efficiency. Block-level deduplication achieves better efficiency,

in this entire file broken into blocks or chunks. Blocking is crucial to speed-up the

deduplication of large datasets by Lavanya, R. et al., (2017). This procedure is also named

as chunking by Nguyen, Q.N, 2018. Fig 1 shows the entire file divided into four different

blocks B1, B2, B3, and B4.

Fig. 1 Data deduplication process

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

257 http://www.webology.org

A. Advantages and Disadvantages of Deduplication

R. Kaur et al, 2018 highlighted the major advantages and disadvantages of deduplication

techniques.

Advantages

• Decrease storage space.

• Upgrade the network bandwidth

• Saves energy requirement

• Reduction of the overall cost

Disadvantages

• A deduplication technique needs some additional resources.

• Due to hash collision leads to loss of accuracy and consistency of data

• Privacy and security

• Reduction of duplicate copies of data will affect the availability of a storage system.

B. Deduplication Step by Step Procedure

Fig. 2 Deduplication process

Fig 2 shows the deduplication system workflow of text file divided into fixed or variable

size blocks that are called chunking. After chunking for each block, the hash value going to

calculated in this process known as fingerprinting. The next step indexing of fingerprints,

when user data grows the total size of fingerprints also increased due to this the problem

will arise in how to store and manage fingerprints efficiently. Compare the hash value of

chunks with the existing one. If matches found duplicate chunk removed else new chunk

added to index memory this is also called data compression proposed by Nandakumar, T.,

2020. Finally, the stored data need to maintain reliability and security proposed by Draghi,

J., 2008.

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

258 http://www.webology.org

Categorization of Chunking Algorithm

Chunking processes applied in various disciplines, such as networking proposed by Youn,

T.Y, 2018, storage system by Zhou, Y, 2018, data synchronization system, cache system,

text recognition, and so on proposed by Lavanya, R, et al., (2017). The chunking process is

further classified as: (i) Entire file processing and (ii) Block-wise processing. Entire file

processing is means full file is considered as a single block, whereas block processing, the

file divided into several blocks. In entire file chunking comparisons made between the files,

but in block chunking comparisons made within the file as well as with other files. When

dividing a file into blocks or chunks, size can be the fixed size or variable size. The major

difficulty is to determine how the chunk or block size should be, either small or large. The

chunk or block size is too small it will give better results for the small size of a file, whereas

for the huge files this will create performance overhead and indexing problem. If the chunks

are large size, it leads to the problem of finding identical ones and reducing the capability

of deduplication methods by Youn, T, 2018. So, an optimal chunking algorithm is essential

to give better efficiency.

Fig 3. Fixed vs Variable size blocks

Fig 3 shows the fixed and variable size chunking process. Fixed size chunking is very

simple and fast, when a byte insert into the file or delete from the file, all the blocks will

become completely distinct blocks then it fails to identify duplicate chunks. Fig 3 clearly

shows File 1 having A, B, C, and D blocks when inserting a single byte then it is treated as

a new file all the chunks are entirely different. So a fixed size chunking process not reliable

when inserting or deleting. Content defined chunking (CDC) resolved this issue with the

help of variable size chunking. CDC algorithms identify the cut point using the internal

features of the file. So that, when byte shifting or insertion only a few chunks are affected,

the CDC has better performance of identifying duplicate chunks compared with fixed sized

chunking. Variable-length block deduplication gives better granularity control and easy to

insert or delete in block. Content defined chunking algorithm permits to use of many

methods to find the cut-point like hashes, bytes and neural networks or some machine

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

259 http://www.webology.org

learning algorithms. When using neural networks and machine learning algorithms gives

computational overhead compared with hashes and bytes to find a cut point.

Background

In this section we discussed the background of deduplication and variable size chunking,

related work, and their limitations.

A. Deduplication: Background

Deduplication categorizing based on time, level, and location by Zhang, C, 2020. Based on

the time it is further classified as inline deduplication and offline deduplication. Inline

deduplication needs only less storage compared with offline deduplication because inline

deduplication does not store data before processing. Anyway, computation takes time which

may be affecting the overall performance. On the other hand, offline deduplication will

store data for a short period of time it will lead to some problems when storage is full.

Level-based deduplication is classified as byte, block, and file-level. Byte level

deduplication methods compared with bytes and remove replicated bytes. When block-level

deduplication comparisons are made between blocks or chunks. Location-based

deduplication either source-based or target-based, source-based deduplication process done

at the client side which means before uploading data to the server. This will decrease the

drastic bandwidth cost. Server-based deduplication is done at the server-side, this utilizing

more bandwidth.

The fine-grained defragmentation approach used variable size of chunking instead of fixed

size, to achieve exact identification of unique data and almost remove fragmented data. The

fine-grained defragmentation method not only removed fragmented data and also increases

the restore performance by 14 to 329 percentages at the same time reduce the duplicate date

by 25 to 87 percent by Hirsch, M, 2016. A systematic deduplication method should satisfy

the following criteria (i) Less number of hash calculation, (ii) Minimal amount of hash

comparisons, (iii) Best block size selection strategy, and (iv) Fast retrieval.

B. Content Defined Chunking: Background

Fixed-size chunking process lost their efficiency when a byte shifting or inserting, to solve

this byte shifting problem content defined variable-length algorithm was proposed by

Widodo, R.N, 2017, files are read as a chunks are created using Robin fingerprint. This

algorithm is very oldest content defined chunking algorithm. Robin rolling hash is used to

find the cut-off point. Cut-off point set on if the hash value of the sliding window fulfills

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

260 http://www.webology.org

the predefined condition. Earlier Rabin algorithm was the most popular algorithm to

calculate the hash value of sliding window in content defined chunking (CDC) by

Ponnusamy, V, 2020. Rabin algorithms have computational overhead, time-consuming, and

byte shifting problem. Rabin fingerprint has an issue with the size variance of chunks by

Karthick, T, 2018. Another CDC algorithm is the Local Maximum Chunking method

(LMC) by Anandan, M, 2020. Instead of calculating Robin fingerprint LMC finds the

maximum value byte using a sliding window. LMC can overcome byte shifting problem.

Slow chunking performance.

To improve the efficiency of LMC, Asymmetric Extremum (AE) algorithm was proposed

by Tian, W, 2017. The working principle of AE and LMC algorithm Similar, but AE has

two different windows variable-sized window and a fixed window. The number of

comparisons significantly reduced and eliminating low entropy strings, more expensive and

it’s affected by byte shifting problem. A new algorithm Rapid Asymmetric Maximum

Algorithm (RAM) was proposed to improve the chunking throughput of AE by Tan, Y,

2017. RAM has low computational overhead and high speed of the chunking process. RAM

also reduces the overall cost of the chunking process compared with the AE method.

To enhance the essential characteristics of chunking algorithms a Minimal Incremental

Interval (MII) was proposed, it can able to tolerate byte shifting by Zhang, Y, 2015. MII

brings the issue of very hard to adjust the average chunk size and efficiency of the algorithm

not up to the level. C. Zhang et al, 2015 identifies the drawback of MII and introduced a

new algorithm Parity Check of Interval (PCI) can able to tolerate byte shifting problem, and

the processing speed PCI is notably less than other algorithms. The drawback of PCI is the

increasing transmission compression rate.

C. Motivation

The chunk or block size is too small it will give better results for the small size of a file,

whereas for the huge files this will create performance overhead and indexing problems. If

the chunks are large size, it leads to the problem of finding identical ones and reducing the

capability of deduplication methods proposed by Widodo, R.N, 2017. So, an optimal

chunking algorithm is essential to give better efficiency.

1. Performance issue: Mostly offline deduplication method applied in secondary storage, but

it needs additional short-term storage space and also raises the I/O bandwidth. There is a

need to evolve well organized inline deduplication method with the effective use of

resources in a cloud by Saharan, S, 2020.

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

261 http://www.webology.org

2. Selecting optimal chunk size: Smaller chunks will save space, but it will generate more

hash values. A larger chunk size decreases the hash calculation but it decreases the

capacity of the deduplication concept. So, a systematic method needs to calculate the

optimum size of chunks.

Exploration of Chunking Algorithm

This section discusses the various content defined chunking algorithms performance and its

deficiencies.

A. Rabin based Algorithm

Robin algorithm perceives the cut point done by rolling hash. Rabin fingerprint

implemented using polynomial over a finite field. When the window slides old fingerprint

can be utilized to compute a new one proposed by Tan, Y, 2018.

The data stream defined as, M.O. Rabin (1981).

𝑅𝑎𝑏𝑖𝑛(𝐵1, 𝐵2, … . 𝐵𝑛) = {∑ 𝐵𝑥
𝑛
𝑥=1 𝑝𝑛−𝑥}𝑚𝑜𝑑 𝐷 (1)

D= Average chunk size

n = number of bytes in sliding window

B1, B2,, Bn = Byte sequence of data stream

Rabin signature calculated by incrementally from previous value as follows:

M.O. Rabin (1981).

𝑅𝑎𝑏𝑖𝑛(𝐵𝑖+1,𝐵𝑖+2, … . . 𝐵𝑖+𝑛) = { ∑ 𝐵𝑥𝑝𝑛−𝑥+𝑖

𝑖+𝑛

𝑥=𝑖+1

} 𝑚𝑜𝑑 𝐷

= {[∑ 𝐵𝑥𝑝𝑛−𝑥+𝑖−1 − 𝐵𝑖𝑝
𝑛−1

𝑖+𝑛−1

𝑥=𝑖

] 𝑝 + 𝐵𝑖+𝑛} 𝑚𝑜𝑑 𝐷

{[𝑅𝑎𝑏𝑖𝑛(𝐵𝑖, 𝐵𝑖+1, … , 𝐵𝑖+𝑛−1) − 𝐵𝑖𝑝
𝑛−1]𝑝 + 𝐵𝑖+𝑛}𝑚𝑜𝑑 𝐷 (2)

Rabin hash having some inadequacy like (i) computational overhead, because of it needs 2

XOR, 1OR, 2 left shifts, and 2 array lookup per byte scanned (ii) Large chunk variance and

(iii) Miscalculation of duplicate detection. Fig 4 procedure of Rabin chunking algorithm.

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

262 http://www.webology.org

Fig. 4 Operation of Rabin algorithm

B. Local Maximum Chunking Algorithm (LMC)

LMC was introduced to solve the problem of high chunk variance in the Rabin based

algorithm proposed by Rabin, M.O, 2018. There is no hash computation required as like

Rabin algorithm; LMC used a fixed symmetric window and byte value of files to detect cut

points. If the maximum value byte is placed in between two fixed-sized windows, then the

cut-off point can be fixed at the end of the data window. If not, the data window moved by

one byte again the procedure will continue till end of the data stream proposed by Bjørner,

N, 2010. Whenever the data window slides algorithm have to verify all the bytes within the

window. So the chunking process will become slow. Computational overhead is intended

by time consumption to run the algorithm; the LMC algorithm having four addition, two

assignment, and three comparisons. Fig 5 procedure of LMC.

Fig. 5 Operation of LMC algorithm

C. Asymmetric Extremum Algorithm (AE)

AE developed to overcome the drawbacks in LMC and Rabin, 1981. AE gains high

performance compared with the existing algorithm, the main reason behind that extreme

value in an asymmetric window without having any backtracking process. So AE algorithm

very fast and having smaller chunk variance. AE is a similar process to LMC but it has low

computational overhead than LMC. AE is done with less comparison to find the cut points.

Fig. 6 Operation of AE algorithm

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

263 http://www.webology.org

Fig 6. Shows the workflow of the AE algorithm, here extreme value or maximum value

must satisfy the condition of extreme value must be greater than the all the bytes in the

window left and right, then the cut point decided next byte of the fixed-sized window. In

the AE algorithm having some deficiencies, whenever insertion, deletion, or any update on

the data stream; byte shifting process will occur AE has less resistance on byte shifting

because of the extreme byte value placed in the mid of the chunk.

D. Rapid Asymmetric Maximum Algorithm (RAM)

RAM algorithm used hash less chunking method, using a byte value cut point was

identified. RAM also follows the same kind of method of AE to find the cut point, this

algorithm too used two windows like variable size and fixed-size window. But the

difference is the position of the window placed, at the beginning of the chunk fixed-size

window next variable size window placed and then maximum value byte. RAM produced

a better result on throughput compared with other chunking algorithms and also useful for

client-side deduplication. RAM algorithm having the following comfort,

• Low computational overhead.

• High chunking throughput.

• Fastest chunking speed.

• Reduce the cost of the chunking process.

If the scanned byte greater than the maximum value then a cut point is found. The cut point

will be appearing on the right side of the fixed-sized window. The process of the RAM

algorithm is shown in Fig 7.

Fig. 7 Operation of RAM algorithm

Chunking Algorithm for Incremental Synchronization

Synchronization techniques are full synchronization and incremental synchronization. Full

Synchronization means the full real content is replaced with target data. Incremental

synchronization only changed part of data updated with original content. It reduced the cost

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

264 http://www.webology.org

and time. First, compare target data with real content to identify mismatch content. This

section discusses about how MII and PCI chunking algorithm works under incremental

synchronization.

A. Minimal Incremental Interval (MII)

MII was developed for incremental synchronization between files. Earlier algorithms (AE,

RAM) Chunks are stored in physical disk, so chunk length is considered as the most

important factor by Ponnusamy. V, (2020). But in the incremental backup system, the

chunking algorithm is only utilized to identifying incremental data; it won’t store under the

physical disk. So chunk length is not an important factor, for incremental synchronization

chunking algorithm fulfils the criteria ability to manage the byte shifting problem.

MII read the data byte by byte; recent read byte compared with the existing byte. If a current

byte greater than the existing byte record as a relation < new byte,existing byte>. The

number of byte values in the data interval marked as len. If the length of the incremental

interval reaches preset value then a cut point is found. MII chunking algorithm provides a

better ability to resistance against byte shifting, but performance on chunk size variance

was very poor, and also the efficiency of an algorithm not good.

B. Parity Check of Interval (PCI)

PCI algorithm overcomes the problem of the MII method. PCI satisfies the condition’s byte

shifting problem and also can able to locate the changed data exactly in incremental

synchronization. Minimize the bandwidth cost of transmission but chunking speed

comparatively less than RAM and AE.

PCI read input as a data stream and data window length = ‘W’, the head point of data

window set as the first bye of the file. PCI set two preset value length of data window (W=5)

and the threshold of total number of 1s in binary form (NO1BF) V=34. If the data window

is filled with NO1BF > the preset value then the cut-off point will be set at end of the data

window.

Performance Evaluation

In this section, chunking algorithms are compared with others in terms of chunk

characteristics like chunk speed, number of chunks, throughput, and chunk variance. Chunk

variance must be less as possible. Table 1 described the dataset. Three dataset generated by

using Mersenne Twister Pseudo-Random Number Generator. Because Chunking

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

265 http://www.webology.org

algorithms performance is also based on the type of dataset, and gave a different set of

output for a different type of dataset. For example, the LMC algorithm performed well in

the compressed type of file, and the Rabin algorithm works well for network traffic files by

Widodo, R.N., et al., (2017). Table 2 illustrated processing time for all chunking algorithms.

Table 1 Dataset

Dataset Size Generated by

Data set 1 2GB Mersenne Twister Pseudo-Random Number Generator

Data set 2 1.5 GB Mersenne Twister Pseudo-Random Number Generator

Data set 3 1 GB Mersenne Twister Pseudo-Random Number Generator

Draghi. J, et al., (2008)

Table 2 Processing Time for all Algorithms

Chunking

Algorithm
Data set 1 Data set 2 Data set 3

 Processing time (ms) Processing time (ms) Processing time (ms)

Rabin 2.46 2.11 1.84

LMC 2.61 2.32 2.11

AE 1.90 1.45 1.10

RAM 0.73 0.51 0.33

PCI 2.40 1.90 1.52

Fig. 8 Processing time of different chunking algorithm

Fig 8 shows chunking speed of different algorithms for three different data set. Among all

these algorithms RAM algorithm highest chunking speed and better performance of

deduplication. PCI has the best performance in deduplication but it has less processing

speed. Table 3 specify the number of chunks in each dataset for all chunking algorithm.

0

0.5

1

1.5

2

2.5

3

Rabin LMC AE RAM PCI

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

Dataset 1

Dataset 2

Dataset 3

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

266 http://www.webology.org

Table 3 Number of Chunks

Algorithms Dataset 1 Dataset 2 Dataset 3

Rabin 1950 1545 982

LMC 4500 3706 2230

AE 3578 3604 2148

RAM 9500 7000 4500

PCI 9423 6850 4486

Conclusion

In this paper, we have discussed content-defined chunking algorithms for data

deduplication and how they overcome the limitations of the fixed-size chunking method.

The main drawback of fixed size chunking was the byte shifting problem, when a byte was

inserted or deleted at the beginning or middle of the content entire blocks will be changed

in this method. Variable size chunking or content defined chunking algorithms works based

on the content and also we analysed all the content defined chunking algorithms

performance and its limitations. Overall RAM and PCI algorithm performed well in the

deduplication process but compared with RAM and PCI, RAM takes less processing time

for chunking and it has low computational overhead and high chunking throughput.

References

Kaur, R., Chana, I., & Bhattacharya, J. (2018). Data deduplication techniques for efficient cloud

storage management: a systematic review. The Journal of Supercomputing, 74(5),

2035-2085. https://doi.org/10.1007/s11227-017-2210-8

Paulo, J., & Pereira, J. (2014). A survey and classification of storage deduplication systems.

ACM Computing Surveys (CSUR), 47(1), 1-30.

Viji, D., & Revathy, S. (2019). Various Data Deduplication Techniques of Primary Storage. In

International Conference on Communication and Electronics Systems (ICCES), 322-327.

Nguyen, Q.N., Arifuzzaman, M., Yu, K., & Sato, T. (2018). A context-aware green information-

centric networking model for future wireless communications. IEEE Access, 6,

22804-22816.

Sanyal, S., & Zhang, P. (2018). Improving quality of data: IoT data aggregation using device to

device communications. IEEE Access, 6, 67830-67840.

Li, J., Wu, J., & Chen, L. (2018). Block-secure: Blockchain based scheme for secure P2P cloud

storage. Information Sciences, 465, 219-231.

http://www.sciencedirect.com/science/article/pii/S0020025518305012

Youn, T.Y., Chang, K.Y., Rhee, K.H., & Shin, S.U. (2018). Efficient client-side deduplication

of encrypted data with public auditing in cloud storage. IEEE Access, 6, 26578-26587.

Zhou, Y., Deng, Y., Yang, L.T., Yang, R., & Si, L. (2018). LDFS: A low latency in-line data

deduplication file system. IEEE Access, 6, 15743-15753.

https://doi.org/10.1007/s11227-017-2210-8

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

267 http://www.webology.org

Zhou, Y., Feng, D., Hua, Y., Xia, W., Fu, M., Huang, F., & Zhang, Y. (2018). A similarity-aware

encrypted deduplication scheme with flexible access control in the cloud. Future

Generation Computer Systems, 84, 177-189.

Lavanya, R., Saranya, P., & Viji, D. (2017). Sampling Selection Strategy for Large Scale

Deduplication for Web Data Search. International Journal of Applied Engineering

Research, 12(11), 2670-2674.

Zhang, C., Qi, D., Li, W., & Guo, J. (2020). Function of Content Defined Chunking Algorithms

in Incremental Synchronization. IEEE Access, 8, 5316-5330.

Hirsch, M., Ish-Shalom, A., & Klein, S.T. (2016). Optimal partitioning of data chunks in

deduplication systems. Discrete Applied Mathematics, 212, 104-114.

Widodo, R.N., Lim, H., & Atiquzzaman, M. (2017). A new content-defined chunking algorithm

for data deduplication in cloud storage. Future Generation Computer Systems, 71,

145-156.

Saharan, S., Somani, G., Gupta, G., Verma, R., Gaur, M.S., & Buyya, R. (2020). QuickDedup:

Efficient VM deduplication in cloud computing environments. Journal of Parallel and

Distributed Computing, 139, 18-31.

Tan, Y., Wang, B., Wen, J., Yan, Z., Jiang, H., & Srisa-an, W. (2018). Improving restore

performance in deduplication-based backup systems via a fine-grained defragmentation

approach. IEEE Transactions on Parallel and Distributed Systems, 29(10), 2254-2267.

Rabin, M.O. (1981). Finger printing by random polynomials, no. TR-15–81. Center for Research

in Computing Techn., Aiken Computation Laboratory, Univ., 15–18.

Bjørner, N., Blass, A., & Gurevich, Y. (2010). Content-dependent chunking for differential

compression, the local maximum approach. Journal of Computer and System Sciences,

76(3-4), 154-203.

Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015). AE: An

asymmetric extremum content defined chunking algorithm for fast and bandwidth-

efficient data deduplication. In IEEE Conference on Computer Communications

(INFOCOM), 1337-1345.

Zhang, C., Qi, D., Cai, Z., Huang, W., Wang, X., Li, W., & Guo, J. (2019). MII: A novel content

defined chunking algorithm for finding incremental data in data synchronization. IEEE

Access, 7, 86932-86945.

Tan, Y., & Yan, Z. (2017). Multi-objective metrics to evaluate deduplication approaches. IEEE

Access, 5, 5366-5377.

Tian, W., Li, R., Xu, Z., & Xiao, W. (2017). Does the content defined chunking really solve the

local boundary shift problem?. In IEEE 36th International Performance Computing and

Communications Conference (IPCCC), 1-8.

Anandan, M., Manikandan, M., & Karthick, T. (2020). Advanced Indoor and Outdoor

Navigation System for Blind People Using Raspberry-Pi. Journal of Internet Technology,

21(1), 183-195.

Karthick, T., Amith Sai, A.V., Kavitha, P., Jothicharan, J., & Kirthiga Devi, T. (2020). Emotion

detection and therapy system using chatbot. International journal of Advanced Trends in

Computer Science and Engineering, 9(4), 5973 – 5978.

https://www.scopus.com/authid/detail.uri?authorId=57201700942
https://www.scopus.com/authid/detail.uri?authorId=57218794159
https://www.scopus.com/authid/detail.uri?authorId=57218794053
https://www.scopus.com/authid/detail.uri?authorId=57218798139
https://www.scopus.com/authid/detail.uri?authorId=57218776396

Webology, Volume 18, Special Issue on Information Retrieval and Web Search

April, 2021

268 http://www.webology.org

Nandakumar, T., & Yuvaraj, R. (2020). Data-driven methods for next generation of wireless

communication networks. International Journal of Advanced Trends in Computer Science

and Engineering, 2020, 9(4), 4696–4700.

Timande, S., & Dhabliya, D. (2019). Designing multi-cloud server for scalable and secure
sharing over web. International Journal of Psychosocial Rehabilitation, 23(5), 835-841.

Dhabliya, D., & Dhabliya, R. (2019). Key characteristics and components of cloud computing.
International Journal of Control and Automation, 12(6 Special Issue), 12-18.

https://www.scopus.com/authid/detail.uri?authorId=57220497023
https://www.scopus.com/authid/detail.uri?authorId=57210651030

