PQ - Sum Divisor Cordial graphs

D.Jaspin Jeba¹*, G.Sudhana²

¹Research Scholar, Reg.No.20123112092023, ²Assistant Professor

¹,²Department of Mathematics, Nesamony Memorial Christian College, Marthandam. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, India.

Abstract:
Graph labeling is an assignment of integers to the vertices or edges or both depending on certain conditions. A graph G with p vertices and q edges is said to admit PQ- sum divisor cordial labeling if the labeling h from V(G) to {1, 2, ..., p} induces a mapping

\[h^*: E(G) \rightarrow \{0, 1\} \]

as

\[h^*(xy) = \begin{cases}
1 & \text{if } 2 \left(P_{xy} + Q_{xy} \right) \\
0 & \text{otherwise}
\end{cases} \]

with the condition that \(|e_h^*(0) - e_h^*(1)| \leq 1 \), where \(e_h^*(k) \) is the number of edges labeled with k. A graph which admits a PQ- sum divisor cordial labeling is called a PQ- sum divisor cordial graph. In this paper, we prove that the path \(P_n \), cycle \(C_n \), star graph \(K_{1,n} \), bistar graph \(B_{m,n} \), the subdivision graph of the star and bistar graphs \(S(K_{1,n}) \) and \(S(B_{m,n}) \), the splitting graph of the star graph \(S'(K_{1,n}) \), the fan graph \(F_{1,n} \), the vertex switching of the path and the cycle, the graphs \(P_n^2 \) and \(P_n \odot K_1 \) are PQ- sum divisor cordial graphs.

Keywords: labeling, cordial labeling, sum divisor cordial labeling.

1. INTRODUCTION

Labeling of a graph is an immense and vast area of research in the field of graph theory. If the vertices or edges or both of a graph are assigned values subject to certain conditions, then it is known as graph labeling. Cahit proposed the notion of cordial labeling in 1987 as a weaker version of graceful and harmonious labeling [1]. Let f be a function from the vertex set of G to \{0, 1\} and for each edge xy assign the label \(|f(x) - f(y)|\). The function f is called a cordial labeling of G if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ at most by 1 and number of edges labeled with 0 and the number of edges labeled with 1 differ at most by 1. The notion of sum divisor cordial labeling was introduced by A. Lourdusamy and F. Patrick[4]. Let f be a bijection from the vertex set of G to \{1, 2, ..., |V(G)|\} and for each edge xy assign the
label 1 if 2 divides \(f(x) + f(y) \) and the label 0 otherwise. The function \(f \) is called a sum divisor cordial labeling of \(G \) if the number of edges labeled with 0 and the number of edges labeled with 1 differ at most by 1. Motivated by this we introduced PQ- sum divisor cordial labeling of graphs. In this section we provide a summary of definitions and notations required for our investigation.

Definition 1.1. The subdivision graph \(S(G) \) is obtained from a graph \(G \) by subdividing each edge of \(G \) with a vertex.

Definition 1.2. For a graph \(G \) the splitting graph \(S'(G) \) is obtained by adding a new vertex \(x' \) corresponding to every vertex \(x \) of \(G \) such that \(N(x) = N(x') \), where \(N(x) \) is the set of all vertices adjacent to \(x \) in \(G \).

Definition 1.3. The corona product \(G_1 \odot G_2 \) of two graphs \(G_1(p_1, q_1) \) and \(G_2(p_2, q_2) \) is defined as the graph obtained by taking one copy of \(G_1 \) and \(p_1 \) copies of \(G_2 \) and joining \(i \)th vertex of \(G_1 \) with an edge to every vertex in the \(i \)th copy of \(G_2 \).

Definition 1.4. The fan graph \(F_{m,n} \) is defined as the join \(\overline{K}_m + P_n \), where \(\overline{K}_m \) is the trivial graph on \(m \) vertices and \(P_n \) is the path graph on \(n \) vertices.

Definition 1.5. The square graph \(G^2 \) of a graph \(G \) is obtained from \(G \) by adding new edges between every two vertices having distance two in \(G \).

Definition 1.6. The vertex switching \(G_v \) of a graph \(G \) is the graph obtained by removing all the edges incident with the vertex \(v \) of \(G \) and joining the vertex \(v \) to every vertex which is not adjacent to \(v \) by an edge.

Notation 1.7. Let \(h \) be a vertex labeling and \(xy \in E(G) \). We denote \(P_{xy} = h(x)h(y) \) and \(Q_{xy} = \begin{cases} h(x) & \text{if } h(x) > h(y) \\ h(y) & \text{if } h(y) > h(x) \end{cases} \) for all \(xy \in E(G) \).

Notation 1.8. Let us denote \(e_h^*(k) \) = the number of edges labeled with \(k \).

Definition 1.9. Let \(G \) be a simple graph and \(h: V(G) \to \{1, 2, \ldots, |V(G)|\} \) be a bijection. For each edge \(xy \) assign \(h^*(xy) = \begin{cases} 1 & \text{if } 2 \mid (P_{xy} + Q_{xy}) \\ 0 & \text{otherwise} \end{cases} \). The labeling \(h \) is called a PQ- sum divisor cordial labeling if \(|e_h^*(0) - e_h^*(1)| \leq 1 \). A graph which admits a PQ- sum divisor cordial labeling is called a PQ- sum divisor cordial graph.
2. MAIN RESULTS

Theorem 2.1. The path graph P_n is a PQ- sum divisor cordial graph.

Proof. Let G be the path graph P_n. Let $x_i (1 \leq i \leq n)$ be the vertices of G.

Define $h : V(G) \to \{1, 2, \ldots, n\}$ by $h(x_1) = 1$, $h(x_2) = 2$ and

$$h(x_i) = \begin{cases}
2i - 3 & \text{if } 3 \leq i \leq \left\lceil \frac{n}{2} \right\rceil + 1 \\
2(n - i) + 4 & \text{if } \left\lceil \frac{n}{2} \right\rceil + 2 \leq i \leq n
\end{cases}$$

Then the labeling h will induce the map $h^* : E(G) \to \{0, 1\}$. Here, the number of edges labeled with 0 and 1 are $e_{h^*}(0) = e_{h^*}(1) = \frac{n - 1}{2}$ if n is odd and $e_{h^*}(0) = \left\lfloor \frac{n - 1}{2} \right\rfloor$, $e_{h^*}(1) = \left\lceil \frac{n - 1}{2} \right\rceil$ if n is even. Thus $|e_{h^*}(0) - e_{h^*}(1)| \leq 1$ and hence P_n is a PQ- sum divisor cordial graph.

Theorem 2.2. The complete graph K_n is not a PQ- sum divisor cordial graph for all n.

Proof. Let G be the complete graph K_n. Let $x_i (1 \leq i \leq n)$ be the vertices of G. Label the vertices of G in any order.

Let $A = \{1, 2, 3, 7\}$. Then we have $e_{h^*}(1) > \left\lceil \frac{n(n - 1)}{4} \right\rceil$ for all $n \leq 17$ and $n \notin A$. Also, $e_{h^*}(1) < \left\lceil \frac{n(n - 1)}{4} \right\rceil$ for all $n \geq 18$. Thus, $|e_{h^*}(0) - e_{h^*}(1)| > 1$ for all $n \notin A$. Hence, K_n is not a PQ-sum divisor cordial graph for all n.

Theorem 2.3. The cycle graph C_n is a PQ- sum divisor cordial graph.

Proof. Let G be the cycle graph C_n. Let $x_i (1 \leq i \leq n)$ be the vertices of G. Define $h : V(G) \to \{1, 2, \ldots, n\}$ as follows:

Case(i): n is odd

Label the vertex x_1 by 1, $x_{\left\lfloor \frac{n}{2} \right\rfloor}$ by n, $x_{\left\lceil \frac{n}{2} \right\rceil}$ by $n - 1$ and the remaining vertices by

$$h(x_i) = \begin{cases}
2i - 2 & \text{if } 2 \leq i \leq \left\lceil \frac{n}{2} \right\rceil \\
2(n - i) + 3 & \text{if } \left\lceil \frac{n}{2} \right\rceil + 2 \leq i \leq n
\end{cases}$$

Then the labeling h will induce the map $h^* : E(G) \to \{0, 1\}$. Also, we get $e_{h^*}(1) = \left\lfloor \frac{n}{2} \right\rfloor$ and $e_{h^*}(0) = \left\lceil \frac{n}{2} \right\rceil$.
Case(ii): n is even

In this case, label the vertex x_i by 1, $x_{\frac{n}{2}+1}$ by $n - 1$, $x_{\frac{n}{2}+2}$ by n and the remaining vertices by $h(x_i) = \begin{cases} 2i - 2 & \text{if } 2 \leq i \leq \frac{n}{2} \\ 2(n - i) + 3 & \text{if } \frac{n}{2} + 3 \leq i \leq n \end{cases}$.

Then the number of edges labeled with 0 and 1 are $e_{h^*}(0) = e_{h^*}(1) = \frac{n}{2}$.

Thus in each case, we have $|e_{h^*}(0) - e_{h^*}(1)| \leq 1$. Hence, C_n is a PQ- sum divisor cordial graph.

Theorem 2.4. The graph P_n^2 is a PQ- sum divisor cordial graph.

Proof. Let $G = P_n^2$. Let $x_i (1 \leq i \leq n)$ be the vertices of G. Then

$E(G) = \{x_i, x_{i+1} : 1 \leq i \leq n - 1\} \cup \{x_i, x_{i+2} : 1 \leq i \leq n - 2\}$. Define $h : V(G) \rightarrow \{1, 2, \ldots, n\}$ as follows:

Case(i): n is odd

$h(x_i) = \begin{cases} 2i - 1 & \text{if } 1 \leq i \leq \frac{n}{2} \\ 2(n - i) + 2 & \text{if } \frac{n}{2} + 2 \leq i \leq n \end{cases}$, $h\left(x_{\frac{n}{2}}\right) = n - 1$ and $h\left(x_{\frac{n}{2}+1}\right) = n$.

Here, the labeling h will induce the map $h^* : E(G) \rightarrow \{0, 1\}$. Also, we get $e_{h^*} (1) = n - 1$ and $e_{h^*} (0) = n - 2$.

Case(ii): n is even

$h(x_i) = \begin{cases} 2i - 1 & \text{if } 1 \leq i \leq \frac{n}{2} \\ 2(n - i) + 2 & \text{if } \frac{n}{2} + 1 \leq i \leq n \end{cases}$

In this case, we have $e_{h^*} (1) = n - 1$ and $e_{h^*} (0) = n - 2$.

Thus in each case, we have $|e_{h^*} (0) - e_{h^*} (1)| \leq 1$. Hence, P_n^2 is a PQ- sum divisor cordial graph.

Theorem 2.5. The star graph $K_{1,n}$ is a PQ- sum divisor cordial graph.

Proof. Let G be the star graph $K_{1,n}$. Let $x, x_i (1 \leq i \leq n)$ be the vertices of G. Define $h : V(G) \rightarrow \{1, 2, \ldots, n + 1\}$ as follows:

Case(i): $n \equiv 0(\text{mod } 4)$
Label the vertex x by 4 and $x_i (1 \leq i \leq n)$ by $1, 2, 3, 5, 6, \ldots, n + 1$ in any order. Then the number of edges labeled with 0 and 1 are $e_{k^*}(0) = e_{k^*}(1) = \frac{n}{2}$.

Case(ii): $n \equiv 1, 2, 3 (\text{mod} \ 4)$

Label the vertex x by 2 and $x_i (1 \leq i \leq n)$ by $1, 3, 4, \ldots, n + 1$ in any order. Then the number of edges labeled with 0 and 1 are $e_{k^*}(0) = \left\lceil \frac{n}{2} \right\rceil$ and $e_{k^*}(1) = \left\lfloor \frac{n}{2} \right\rfloor$.

In both cases, we have $|e_{k^*}(0) - e_{k^*}(1)| \leq 1$. Hence, $K_{1,n}$ is a PQ- sum divisor cordial graph.

Theorem 2.6. The fan graph $F_{1,n}$ is a PQ- sum divisor cordial graph.

Proof. Let G be the fan graph $F_{1,n}$. Let $x, x_i (1 \leq i \leq n)$ be the vertices of G. Then $E(G) = \{xx_i : 1 \leq i \leq n\} \cup \{x_ix_{i+1} : 1 \leq i \leq n - 1\}$. Define $h : V(G) \rightarrow \{1, 2, \ldots, n + 1\}$ by $h(x) = 1$ and $h(x_i) = i + 1$. Then the labeling h will induce the map $h^* : E(G) \rightarrow \{0, 1\}$ and we get $e_{k^*}(1) = n$, $e_{k^*}(0) = n - 1$.

Here, $|e_{k^*}(0) - e_{k^*}(1)| \leq 1$. Hence, $F_{1,n}$ is a PQ- sum divisor cordial graph.

Theorem 2.7. The comb graph $P_n \odot K_1$ is a PQ- sum divisor cordial graph.

Proof. Let G be the comb graph $P_n \odot K_1$. Let $x, y_i (1 \leq i \leq n)$ be the vertices of G. Then $E(G) = \{x_iy_i : 1 \leq i \leq n\} \cup \{x_ix_{i+1} : 1 \leq i \leq n - 1\}$.

Define $h : V(G) \rightarrow \{1, 2, \ldots, 2n\}$ by $h(x_i) = 2i - 1$ and $h(y_i) = 2i$. Then the induced map $h^* : E(G) \rightarrow \{0, 1\}$ satisfies $e_{k^*}(1) = n$ and $e_{k^*}(0) = n - 1$. Here, $|e_{k^*}(0) - e_{k^*}(1)| \leq 1$.

Hence, $P_n \odot K_1$ is a PQ- sum divisor cordial graph.

Theorem 2.8. The bistar graph $B_{m,n}$ is a PQ- sum divisor cordial graph.

Proof. Let G be the bistargraph $B_{m,n}$. Let $x, y, x_i (1 \leq i \leq m)$, $y_j (1 \leq j \leq n)$ be the vertices of G. Without loss in generality we may assume that $m \geq n$. Define $h : V(G) \rightarrow \{1, 2, \ldots, m + n + 2\}$ as follows:

Case(i): Both m and n are odd

$$h(x_i) = \begin{cases}
4 \left\lfloor \frac{i}{2} \right\rfloor - 1 & \text{if } i \text{ is odd} \\
2i & \text{if } i \text{ is even}
\end{cases} \quad \text{for } 3 \leq i \leq n + 1 \quad \text{and} \quad h(y_j) = \begin{cases}
4 \left\lfloor \frac{j}{2} \right\rfloor + 1 & \text{if } j \text{ is odd} \\
2j + 2 & \text{if } j \text{ is even}
\end{cases} \quad \text{for } 1 \leq j \leq n
$$

5335

http://www.webology.org
Then the labeling \(h \) will induce the map \(h^*: E(G) \to \{0, 1\} \). Also the number of edges labeled with 0 and 1 are
\[
e_{h^*}(0) = \left\lfloor \frac{m+n+1}{2} \right\rfloor \quad \text{and} \quad e_{h^*}(1) = \left\lceil \frac{m+n+1}{2} \right\rceil.
\]
Case(ii): Both \(m \) and \(n \) are even
In this case, label the vertices of \(G \) as in case(i). Then the number of edges labeled with 0 and 1 are
\[
e_{h^*}(0) = \left\lfloor \frac{m+n+1}{2} \right\rfloor \quad \text{if} \quad n \equiv 2(\text{mod} \ 4) \quad \text{and} \quad e_{h^*}(1) = \left\lceil \frac{m+n+1}{2} \right\rceil \quad \text{if} \quad n \equiv 0(\text{mod} \ 4)
\]
Case(iii): \(m \) is odd and \(n \) is even
If \(m \equiv 1(\text{mod} \ 4) \), label the vertices of \(G \) as in case(i).
If \(m \equiv 3(\text{mod} \ 4) \) and \(n \equiv 2(\text{mod} \ 4) \), label the vertices of \(G \) by
\[
h(x_i) = \begin{cases} 2i & \text{if } i \text{ is odd} \\ 2i+1 & \text{if } i \text{ is even} \end{cases} \quad \text{for } 2 \leq i \leq n
\]
\[
h(y_j) = \begin{cases} 2j+2 & \text{if } j \text{ is odd} \\ 2j+3 & \text{if } j \text{ is even} \end{cases} \quad \text{for } 2 \leq j \leq n
\]
If \(m \equiv 3(\text{mod} \ 4) \) and \(n \equiv 0(\text{mod} \ 4) \), label the vertices of \(G \) by
\[
h(x_i) = \begin{cases} 2i+2 & \text{if } i \text{ is odd} \\ 2i+3 & \text{if } i \text{ is even} \end{cases} \quad \text{for } 2 \leq i \leq n-1
\]
\[
h(y_j) = \begin{cases} 2j & \text{if } j \text{ is odd} \\ 2j+1 & \text{if } j \text{ is even} \end{cases} \quad \text{for } 2 \leq j \leq n
\]
Here, we observe that \(e_{h^*}(0) = e_{h^*}(1) = \frac{m+n+1}{2} \).
Case(iv): \(m \) is even and \(n \) is odd
If \((m \equiv 0(\text{mod} \ 4) \text{ and } n \equiv 3(\text{mod} \ 4)) \text{ or } (m \equiv 2(\text{mod} \ 4) \text{ and } n \equiv 1(\text{mod} \ 4)) \), label the vertices of \(G \) as in case(i). If \((m \equiv 0(\text{mod} \ 4) \text{ and } n \equiv 1(\text{mod} \ 4)) \text{ or } (m \equiv 2(\text{mod} \ 4) \text{ and } n \equiv 3(\text{mod} \ 4)) \), label the vertices of \(G \) as in the case \(m \equiv 3(\text{mod} \ 4) \) and \(n \equiv 2(\text{mod} \ 4) \) of case(iii).
Then the number of vertices and edges labeled with 0 and 1 are \(e_{h^*}(0) = e_{h^*}(1) = \frac{m+n+1}{2} \).
In each cases, \(|e_{h^*}(0) - e_{h^*}(1)| \leq 1 \). Hence, \(B_{m,n} \) is a PQ- sum divisor cordial graph.

Theorem 2.9. The graph \(S(K_{1,n}) \) is a PQ- sum divisor cordial graph.

Proof. Let \(G \) be the subdivision graph of the star graph \(K_{1,n} \). Let \(x_i, (1 \leq i \leq n) \) be the vertices of \(K_{1,n} \) and let \(x_i^+, (1 \leq i \leq n) \) be the vertices which subdivides the edges \(xx_i, (1 \leq i \leq n) \). Define \(h: V(G) \to \{1, 2, \ldots, 2n+1\} \) by \(h(x) = 1, h(x_i) = 2i+1 \text{ and } h(x_i^+) = 2i \). Then \(h \) will induce the map \(h^*: E(G) \to \{0,1\} \) and we get \(e_{h^*}(0) = e_{h^*}(1) = n \).
Here, \(|e_h(0) - e_h(1)| \leq 1 \). Hence, \(S(K_{1, n}) \) is a PQ- sum divisor cordial graph.

Theorem 2.10. The graph \(S(B_{m, n}) \) is a PQ- sum divisor cordial graph.

Proof. Let \(G \) be the subdivision graph of the bistar \(B_{m, n} \). Let \(x, y, x_i (1 \leq i \leq m) \) and \(y_j (1 \leq j \leq n) \) be the vertices of \(B_{m, n} \). Let \(z \) be the vertex which subdivides the edge \(xy \) and let \(x'_j(1 \leq i \leq m), y'_j (1 \leq j \leq n) \) be the vertices which subdivides the edges \(xx_i (1 \leq i \leq m) \) and \(yy_j (1 \leq j \leq n) \) respectively. Define \(h : V(G) \to \{1, 2, \ldots, 2(m + n) + 3\} \) as follows:

Case(i): \(n \) is even

\[
\begin{align*}
h(x) &= 1, \quad h(y) = 2, \quad h(z) = 3, \quad h(x_i) = 2i + 3, \quad h(x'_i) = 2(i + 1) \quad \text{for} \ 1 \leq i \leq m, \\
h(y_j) &= \begin{cases} 2(m + j) + 2 & \text{if} \ j \text{ is odd} \\ 2(m + j) + 3 & \text{if} \ j \text{ is even} \end{cases}
\end{align*}
\]

Case(ii): \(n \) is odd

\[
\begin{align*}
h(x) &= 1, \quad h(y) = 2, \quad h(z) = 3, \quad h(x_i) = 2i + 3, \quad h(x'_i) = 2(i + 1) \quad \text{for} \ 1 \leq i \leq m, \\
h(y_j) &= \begin{cases} 2(m + j) + 4 & \text{if} \ j \text{ is odd} \\ 2(m + j) + 1 & \text{if} \ j \text{ is even} \end{cases}
\end{align*}
\]

In this case, label the vertices \(x, y, z, x_i, x'_i (1 \leq i \leq m - 2), y_j, y'_j (1 \leq j \leq n - 2) \) as in case(i). Also label \(h(y_{n-1}) = 2(m + n) + 3, \quad h(y_n) = 2(m + n + 1), \quad h(y_{n-1}') = 2(m + n) - 1 \) and \(h(y_n') = 2(m + n) + 1 \).

In each case, the number of edges labeled with 0 and 1 are \(e_h(0) = e_h(1) = m + n + 1 \). Hence, \(S(B_{m, n}) \) is a PQ- sum divisor cordial graph.

Theorem 2.11. The graph \(S'(K_{1,n}) \) is a PQ- sum divisor cordial graph.

Proof. Let \(G \) be the splitting graph of the star graph \(K_{1,n} \). Let \(x, x_i (1 \leq i \leq n) \) be the vertices of \(K_{1,n} \) and let \(x', x'_i (1 \leq i \leq n) \) be the added vertices corresponding to \(x, x_i (1 \leq i \leq n) \) to form \(G \). Define \(h : V(G) \to \{1, 2, \ldots, n\} \) as follows:

Case(i): \(n \equiv 0(\text{mod} \ 4) \)

\[
\begin{align*}
h(x) &= 1, \quad h(x_1) = 3, \quad h(x) = 2, \quad h(x') = 4, \\
h(x_i) &= \begin{cases} 4 \left(\frac{i}{2}\right) - 1 & \text{if} \ i \text{ is odd} \\ 2i & \text{if} \ i \text{ is even} \end{cases} \quad \text{for} \ 3 \leq i \leq n \quad \text{and} \quad h(x'_i) &= \begin{cases} 4 \left(\frac{i}{2}\right) + 1 & \text{if} \ i \text{ is odd} \\ 2i + 2 & \text{if} \ i \text{ is even} \end{cases} \quad \text{for} \ 1 \leq i \leq n
\end{align*}
\]

Here, \(|e_h(0) - e_h(1)| \leq 1 \). Hence, \(S(K_{1,n}) \) is a PQ- sum divisor cordial graph.
Here, the labeling h will induce the map $h^*: E(G) \to \{0, 1\}$. Also the number of edges labeled with 0 and 1 are $e_{h'}(0) = e_{h'}(1) = \frac{3n}{2}$.

Case (ii): $n \equiv 1, 2, 3, (\text{mod} \ 4)$

$h(x_i) = 1$, $h(x'_i) = 3$, $h(x) = 2$, $h(x') = 4,$

$$h(x_i) = \begin{cases} 2i + 2 & \text{if } i \text{ is odd} \\ 2i + 3 & \text{if } i \text{ is even} \end{cases} \text{ for } 2 \leq i \leq n \quad \text{and} \quad h(x'_i) = \begin{cases} 2i & \text{if } i \text{ is odd} \\ 2i + 1 & \text{if } i \text{ is even} \end{cases} \text{ for } 1 \leq i \leq n$$

Then the number of edges labeled with 0 and 1 are $e_{h'}(0) = e_{h'}(1) = \frac{3n}{2}$ if $n \equiv 2 (\text{mod} \ 4)$.

Also $e_{h'}(0) = \left\lfloor \frac{3n}{2} \right\rfloor$ and $e_{h'}(1) = \left\lceil \frac{3n}{2} \right\rceil$ if n is odd.

Here, $|e_{h'}(0) - e_{h'}(1)| \leq 1$. Hence, $S'(K_{1,n})$ is a PQ-sum divisor cordial graph.

Theorem 2.12. Vertex switching of a cycle C_n admits PQ-sum divisor cordial labeling.

Proof. Let G be the cycle graph C_n and let G_{x_i} be the graph obtained from G by switching a vertex x of G. Let $x_i (1 \leq i \leq n)$ be the vertices of G. Without loss in generality we may assume that $x = v_1$. Define $h: V(G_{x_i}) \to \{1, 2, \ldots, n\}$ by $h(x_i) = i$. Then the labeling h will induce the map $h^*: E(G) \to \{0, 1\}$. Also the number of edges labeled with 0 and 1 are $e_{h'}(0) = n - 2$ and $e_{h'}(1) = n - 3$.

Here, $|e_{h'}(0) - e_{h'}(1)| \leq 1$. Hence, vertex switching of a cycle C_n is a PQ-sum divisor cordial graph.

Theorem 2.13. Vertex switching of a path graph P_n admits PQ-sum divisor cordial labeling.

Proof. Let G be a path graph P_n and let $x_i (1 \leq i \leq n)$ be the vertices of G. Let G_{x_i} be the graph obtained from G by switching a vertex x_i of G. Then we have $V(G) = V(G_{x_i})$.

Define $h: V(G_{x_i}) \to \{1, 2, \ldots, n\}$ by $h(x_i) = \begin{cases} k + 1 & \text{if } k < i \\ 1 & \text{if } k = i \\ k & \text{if } k > i \end{cases}$

Then the labeling h will induce the map $h^*: E(G) \to \{0, 1\}$. Also the number of edges labeled with 0 and 1 are $e_{h'}(0) = e_{h'}(1) = n - 3$.

Here, $|e_{h'}(0) - e_{h'}(1)| \leq 1$. Hence, vertex switching of a path P_n is a PQ-sum divisor cordial graph.
References