
Webology, Volume 17, Number 2, December, 2020

31 http://www.webology.org

Parallel Approaches of Utility Mining for Big Data

Vandna Dahiya

Research Scholar, Maharshi Dayanand University, Rohtak, Haryana.

E-mail: vandanadahiya2010@gmail.com

Sandeep Dalal

Assistant Professor, Maharshi Dayanand University, Rohtak, Haryana.

E-mail: sandeepdalal.80@gmail.com

Received May 08, 2020; Accepted July 15, 2020

ISSN: 1735-188X

DOI: 10.14704/WEB/V17I2/WEB17014

Abstract

Utility Itemset Mining (UIM) is a fundamental technique to find out various itemsets with

interestingness measures in addition to their quantity. It helps in finding valuable items that

cannot be tracked with frequent itemset mining. There are many techniques to mine the

itemsets based on their utilities, but the need of the hour is to mine them from larger datasets.

This paper presents a brief overview of various approaches for utility mining, which mine

using the parallel framework to enhance the pace of computation. The paper is concluded with

a discussion on various challenges and openings in the field of parallel mining and provides a

way for further development of the prevailing methodologies of big data.

Keywords

Utility Mining, Big Data, Spark, Parallel Computing.

Introduction

Pattern mining or itemset mining is a technique to find remarkable, hidden, and useful

patterns in a database. For example, if a person buys a cell phone, he may probably be buy

its cover and screen protector. If a person goes to buy a packet of milk, he may be inclined

to buy the bread and cookies also. These kinds of patterns are found on mining the huge

set of transactions. This information then can be used in recommendation systems and to

provide personalized services to the customers based on their purchasing history. Initially,

the research in pattern mining focused on frequent itemset mining (FIM) and association

rule mining (ARM). Although FIM was a great discovery to mine the itemsets that occur

frequently in a database, it only considers the quantity of the item. The significance of

profit is missing. For example, the sale of bread and butter may be frequent but the sale of

mailto:vandanadahiya2010@gmail.com

Webology, Volume 17, Number 2, December, 2020

32 http://www.webology.org

microwave seems to be occasional and it might not be suggested in the outcome of FIM.

Accordingly, the notion of utility mining was introduced.

 Utility Itemset Mining

The term utility mining was coined in 2006 (Yao and Hamilton). It gives semantic

significance among the items and integrates internal and external utilities of an item. The

internal utility is determined based on the quantity of the item whereas the external utility

indicates the interestingness measure of an item, which can be in any form-profit,

quantity, gain, worth, or other factors. The external utility of an item is based on the

preferences and choices of the user. The product of both these utilities defines the actual

utility of an item and an itemset is called a high utility itemset (HUI) if its value is above a

pre-defined value called as utility threshold. Thus UIM aims to determine the itemsets

based on their importance and not only their occurrence frequency. For example, buying

frequency of milk may be more than a wine bottle, but the later gives more profit value

per unit.

Many algorithms have been developed for HUI mining. These algorithms mine the

itemsets efficiently form small datasets. Most of the algorithms first generate the

candidate sets, and then the actual high utility itemsets are discovered from these

candidate itemsets. This method increases the time of computation and memory

requirements when the size of the dataset increases. Therefore, with the arrival of the big

data era, there is a need to compute efficiently through parallel computing. Many

researchers have been working in the area of computing from large datasets using parallel

or distributed computing. Lin et al. proposed a parallel UP-Growth (PHUI-Growth)

algorithm based on the MapReduce architecture of the Hadoop framework. Chen et al.

proposed a Spark based distributed algorithm PHUI-Miner, which is an extended version

of HUI-Miner. Vo et al. proposed DTWU-mining, which is based on master slave

architecture of parallel processing. A few more algorithms have been developed in this

area, which are being reviewed in the next sections of this paper.

Distributed/ Parallel Paradigms

There are two major challenges in mining from big data. First, the speed of generating the

data is more than what a machine can process in its accessible memory. Second, to

compute the patterns from such a huge amount of data. So any framework for big data

mining would require two assets –data access and its computation. In case of small data

sets, mining can be done easily on a single machine where the entire computing can be

done in the main memory of that machine. But, for larger datasets, it is not possible. Even

Webology, Volume 17, Number 2, December, 2020

33 http://www.webology.org

if the datasets can accommodate inside main memory, it might possible that the

intermediate processing may not adapt to memory. More than one computing node or

cluster is required for such computing-process. Thus, parallel processing is among the

leading methods to tackle the problem of mining from large datasets. But to design an

efficient algorithm for parallel processing is also a challenge, as the algorithm has to deal

with numerous confronts such as load balancing among nodes, scalability, the partition of

work, communication costs, synchronization, fault handling, and security of data, etc.

Some of the parallel and distributed frameworks are being discussed in this section-

Grid Computing: It may be defined as a computer network where resources like

processing power, memory, and data storage of a computer are communal and shared with

other computers in the organization to achieve a common goal. The computers can work

in heterogeneity, where each computer can have different task or job to perform. The

whole system is designed to process in parallel with high performance especially when all

the resources are not available locally.

Multi-core Computing: Multi-core computing is a paradigm where a single silicon chip

is used for two or more independent processors. The parallelism, which is achieved here is

higher than grid computing because of the pipelining and multithreading. While one

instruction is there in one stage of pipeline, another instruction executes in some another

stage of pipeline. Multi-core computing supports high scaling but with the cost of increase

in difficulty level of fabricating and debugging of chips.

Graphics Processing Units: Graphics processing unit or GPU is a programmable

computer chip, which can perform rapid calculations with a high degree of parallel

processing. They were originally invented to provide a 3D visual effect on screens.

Initially, CPU performed calculations but with an increase in demand for computations,

GPU came and took the load of CPU. Some appliances have been proposed in recent

times with the help of CPU and GPU for image processing, parallel graph evaluation, and

other deep learning techniques.

Hadoop and MapReduce: Due to the explosion of a huge amount of data and the need

for fast and efficient processing, there was a prerequisite for the development of

distributed algorithms. To design and implementation of these algorithms, the distributed

platform Apache Hadoop and the programming model MapReduce have been in use since

the last couple of years. Hadoop is an assemblage of open-source utilities for vast data

computation on a network of computers. It can be accommodated onsite datacenter or

using clouds. Applications can be written using MapReduce to process the vast amounts

Webology, Volume 17, Number 2, December, 2020

34 http://www.webology.org

of data across numerous nodes or clusters. It is a Java-based programming model and

used for distributed computing. MapReduce performs two important tasks Map and

Reduce. It splits the input data into individual and independent blocks of data with some

replicas, which are then processed in parallel by the mapper. The output is generated as

the pairs of key-value; which is sorted and then fed to Reducer as the input. Reducer

reduces the overall data based on the keys. The Mapreduce functions as an overall

caretaker of scheduling and monitoring. It also re-executes the failed tasks without

disturbing other tasks. It also performs load balancing by re-assigning the unfinished tasks

of faulty or out of order nodes to other unoccupied nodes. HDFS or Hadoop Distributed

File System is another component of Hadoop, which stores large datasets in a distributed

and reliable manner. But there are certain limitations with Hadoop. The key-value

paradigm of Hadoop may be difficult for some of the problems. Also, all the read and

write operations are performed from disk. Every iteration needs to process from the disk

again, which is a costly operation and restricts the flexibility and functioning of Hadoop.

Figure 1 Distributed Data Mining Framework

Spark: Apache Spark has become the most accepted framework for distributed

computing. It is an integrated analytics engine for large-scale processing of data and

overtakes Hadoop with its in-memory computation-feature. Disk reading for each

iteration is difficult for large data sets, which enhances the reason for the development and

use of Spark over Hadoop. In-memory processing is done at each iteration even for large

Webology, Volume 17, Number 2, December, 2020

35 http://www.webology.org

clusters in the RDD – Resilient Distributed Data sets. RDD is a read-only collection of

data items, which are spread across several clusters and make it fault-tolerant. In spark,

there can be independent Map and Reduce operations that means a Reduce operation does

not depend on Map operation and a Map operation need not be followed by a Reduce

operation. This makes Spark more flexible than Hadoop. Figure 2 represents the Spark

framework.

Figure 2 Framework of Apache Spark

Analysis Criteria

The architectures and frameworks discussed above are analyzed based on various crucial

factors, such as how the search space is split, how the data is represented, the number of

stages and overhead of communication, etc. They are briefly discussed here:

Search Space Division: The division of search space among various nodes imitates the

overall performance of computation. The dataset or the problem is divided into sub-tasks.

The division method constructs various projected databases form the input database,

which are then distributed among the nodes. Each projected database must have the basic

data to generate the local itemsets without being dependent on the outcome of other

nodes. The local outcomes of each subtask are combined to generate the global output as

the final result.

Database Layout: Data representation plays an important role in parallel mining. There

are two types of data representations – Horizontal layout and Vertical layout. In a

horizontal layout, data is stored traditionally in rows. In a vertical layout, data is stored in

terms of key-value pairs in columns. The layout has a significant impact on speed,

Webology, Volume 17, Number 2, December, 2020

36 http://www.webology.org

scalability, and the overall process. In some algorithms, layout also decides the number of

database scans.

Communication Cost: The overhead of communication is decisive in parallel

programming because it can affect the whole speed of processing. The network can go

into logjam if there is a frequent transfer of massive files. A good paradigm needs to have

a reduction in transmission costs.

Load Balancing: Load balancing is a key factor in distributed processing as it affects the

overall efficiency of the computation. A good distribution is strategic for balanced

processing. Although, the sub tasks may have different computation-complexities, which

may lead to different time complexities. Some nodes may be overburdened while some

may rest in idle. Dynamic load balancing techniques are useful in such cases, so that

optimum utilization of resources can be done.

HUIM Methodologies for Big Data

In this section, some of the algorithms are being discussed for high utility itemset mining,

which are based on parallel computation, either with software or hardware.

DTWU-Mining –Vo et al. proposed this algorithm in 2009. This algorithm extends the

TWU-Mining with distributed approach. It uses the master-slave design for parallel

processing with the help of message passing procedure. The whole database is divided

among the slave nodes, which then compute the high utility itemsets locally. The master

node computes the itemsets, which satisfies some minimum constraints at slave nodes.

WIT-tree structure is used at slave nodes to store the database. The algorithm needs only

one scan for computing the itemsets at slave nodes. So, DTWU-Mining outperforms the

TWU-Mining in terms of overall execution time. But, this algorithm lacks the important

features of fault tolerance and fault recovery-process. If any slave node gets crashed, the

whole process of mining can come to halt or might produce inaccurate results of mining.

FUM-D –Subramanian et al. proposed FUM-D or distributed fast utility mining algorithm

in 2013. It is based on distributed architecture and FUM. It is a two-step process. Firstly,

the candidate itemsets are computed locally and then their utility is estimated. In the

second step, total utilities are calculated at the master node based on the utilities of slave

nodes. This approach is roughly ten times faster than FUM but the cost of communication

is very high.

Webology, Volume 17, Number 2, December, 2020

37 http://www.webology.org

PHUI-Growth – Lin et al. proposed this algorithm in 2015. It is an Apriori based parallel

implementation of PHUI algorithm with the MapReduce framework. It uses several great

features of Hadoop such as fault tolerance, fault recovery, low communication cost, high

scalability, and easy utilization of commodity hardware. MapReduce splits the whole job

into smaller autonomous sub-problems. Hadoop Distributed File System is used for

storage and processing of data. DLR-MR (discarding local unpromising items in

MapReduce framework) is introduced as the novel strategy of pruning to reduce the

search space greatly by aborting the intermediate itemsets, which are less promising. This

algorithm is very scalable and outperforms other algorithms but there is an overhead of

multiple-scanning of input data.

PHUI-Miner–PHUI-Miner or Parallel High Utility Itemset Mining algorithm is an

extended and parallel version of HUI-Miner. Chen et al. proposed this algorithm in 2016.

It is based on Apache Spark. The database is divided into different nodes, which in turn

mine the search space locally. To divide the search space, load-balancing approaches are

also introduced. Other versions of this algorithm have also been proposed based on

sampling and compression techniques and are used when there is the vast search space.

As the size of the database increases, sampling size also increases and time to link the

statistics from different nodes also increases. Although PHUI-Miner and other versions

mine the data from large datasets, they only give approximate results, as there is a trade-

off between accuracy and efficiency of the itemsets.

BigHUSP– Zihayat et al. proposed this algorithm in 2016. It is a Spark based algorithm to

mine the high utility sequential patterns for big data. Big HUSP uses multiple MapReduce

like steps to mine the data in parallel. Unpromising items are found using the

overestimated utility model called as Global Sequence-Weight utility or GSWU, which

has downward closure property. Utility information of the itemsets is stored in utility

matrix. Two pruning strategies have been launched to minimize the search space, which

then create lesser number of intermediate candidates. Pruning strategies decrease the

search space. BigHUSP is further more capable in comparison of other state-of-the-art

algorithms for big data.

EFIM-Par–Ashish Tamrakar proposed two MapReduce based algorithms based on the

traditional EFIM in 2017. First, HUI-PR, which is for small datasets. A hash table is being

used in this strategy for search space pruning. Other methods like Transaction Weighted

Utilization, sub-tree utility, and local utility are also used for pruning the tree-structure.

Second, EFIM-Par was introduced for big data. It is a Spark-based algorithm, where the

input data is split into different blocks. These blocks are then distributed to different

Webology, Volume 17, Number 2, December, 2020

38 http://www.webology.org

worker nodes. The split dataset is also used to compute the utility-threshold value form

the database itself. An improvement can be done in EFIM-Par by dividing the tasks to

worker nodes in a more optimum manner.

P-FHM+ - Sethi et al. proposed this algorithm in 2018. This algorithm is a parallel

implementation of FHM+. In FHM+, length constraint is being used for the itemsets,

where itemsets of desired lengths are computed. Data is processed independently on

multiple nodes in a distributed manner. HDFS is used for storing the data and Scala is

used to write the programs. However, the P-FHM+ is better than FHM+ in conditions of

time, the operating time grows linearly on increasing the data. Also, enhanced search

techniques are necessitated for P-FHM+ as it distributes the load to worker nodes

inefficiently.

pEFIM –Nguyen et al. proposed this algorithm in 2018. The algorithm is an extension to

the traditional EFIM algorithm. Modern multi-core processor-based architecture is used to

implement the algorithm in parallel to improve efficiency and performance. Shared

memory systems are used and thus the load balancing becomes easy. Since the algorithm

EFIM is based on depth-first search procedure, different nodes can be assigned with

different search spaces of datasets without overlapping and over crossing. pEFIM runs

approximately six times faster than traditional EFIM when used with two and four

working threads. Although the memory utilization increases with an increase in threads as

each thread has its own private data space.

PHAUIM–Sethi et al. proposed the algorithm Parallel High-Average Utility Itemset

Miner in 2019. The implementation is done on the Apache Spark framework. PHUIM is

an extended edition of HAUI-Miner. In HAUI-Miner, the number of candidate sets was

very high. Also, a new upper bound has been introduced named as Average Utility Upper

Bound or AUUB to measure the high-average utility of itemsets. Dataset is distributed

among the nodes for parallel computation. The algorithm implements an improved search

space division approach, where the search space is partitioned equitably to all the nodes

and thus the overall performance is improved. On experimental evaluation is has been

found that PHAUIM outperforms HAUIM with a huge margin in speed and scalability.

Webology, Volume 17, Number 2, December, 2020

39 http://www.webology.org

Table 1 Various Big Data based Algorithms for Utility Mining

Algorithm

& Author

Year Extends Pros Cons

PHAUIM,

Sethi et al.

2019 HAUI-

Miner

Itemset Mining is done based on

average utility and search space

is improved.

Run time increases with an

increase in transactions.

pEFIM,

Nguyen et

al.

2018 EFIM Static load balancing with

parallel tasks.

Memory consumption is

very high with high number

of threads and dynamic

load balancing is needed.

P-FHM+,

Sethi et al.

2018 FHM+ Utility mining with a length

constraint of itemsets.

Load distribution is very

inefficient.

EFIM-Par,

Ashish T

2017 EFIM Job division is better among

nodes and less number of

candidates.

Tree construction is not

efficient with poor

grouping method.

BigHUSP,

Zihayat et

al.

2016 USpan The efficient strategy of pruning

search space.

Manifold jobs of

MapReduce where

computation time increases

abruptly with growth in the

database.

PHUI-

Miner,

Chen et al.

2016 HUI-

Miner

The workload is balanced

among the nodes. Sampling and

compression techniques are

used for search space pruning.

The sample size is not

appropriate always and

search space partition is not

uniform.

PHUI-

Growth,

Lin et al.

2015 FP-

Growth

High scalability on big data sets

and effective pruning strategies.

Multiple scans of database

and slow merging from

different mappers.

DTWU-

Mining,

Vo et al.

2009 TWU-

Mining

Low communication overhead

and no merging of data from

nodes is required.

No scalability and no fault

tolerance.

Challenges and Future Directions

Big data mining is a novel area. The devices, systems, and algorithms are in their early

stages of development. The challenges in big data mining are poles apart from the

conventional system of data mining, which need to be addressed. Some of them are

considered here-

Privacy: Data mining provides useful perceptions about users but it can also lead to

intimidating the privacy of the user. Various information of users such as location,

priorities, personalized services, etc. need to be well-preserved using the privacy-

preserving techniques (PPT). Only a few algorithms in parallel mining are associated with

privacy-preserving techniques. Algorithms for parallel mining need to be developed with

PPT.

Webology, Volume 17, Number 2, December, 2020

40 http://www.webology.org

Scalability: Inadequate scalability is the main concern for distributing paradigms in data

mining as every system has its own constraints for scaling. Some of the algorithms tend to

show an abrupt increase in time and space with an increase in input data.

Security: Security is another issue for dynamic and complex data. The sensitive data of

the user should be protected from any external interface. Retrieve, storage, and

communication of data should be protected with security solutions. Presently most of the

security algorithms are proposed for static and small sets of data.

Complex type of data: Most algorithms mine the utility information from sequential or

transactional data. However, there is a variety of other complex data such as graphical

data, time-series data, stream data, etc. in various applications. A foremost challenge is to

advance the algorithms, which can compute information from such complex data.

Quality of end result: Result oriented interests are vital. The process of mining is useful

if there is some end result with a specific importance. A framework needs to be there for

the entire procedure of mining the data and then for characterizing the output also so that

some kind of knowledge can be gained from it.

There are various promising fields and opportunities where mining with parallel

computing is required. Some of the possible improvements that can be implemented in

developing these algorithms and other future trends for research in this direction are

discussed here:

Advanced framework: Parallel-distributed architecture for fast computing is required to

enhance the performance of mining algorithms. For graceful scalability, progressive

architecture is required in terms of software and hardware such as cloud-based computing

or GPU based architecture.

Preprocessing: Efficient methods for preprocessing are required like sampling,

compression, etc., which can reduce the input search space and so does the computation.

New applications: There are various new and innovative areas where the parallel

framework can be applied for insights such as IOT, cloud computing, social media, etc.

Other issues: Further prominent issues are there such as privacy and security interests.

Algorithms can be developed with privacy-preserving techniques and encrypted with

security features. More efficient visualization techniques can be designed.

Webology, Volume 17, Number 2, December, 2020

41 http://www.webology.org

Conclusion

Traditional algorithms for itemset mining are inefficient for mining large datasets. Parallel

and distributed frameworks have been developed to challenge the issues of mining with

big data. Some of the parallel and distributed architectures along with various algorithms

have been reviewed in this paper with their merits and demerits. Most of these algorithms

are the parallel implementation of already existing algorithms for small datasets. Some

vulnerable concerns have also been discussed to demonstrate the range of challenges in

this area. Further research work can be done to enhance the utility mining algorithms with

various features such as security, privacy, dynamic load balancing, etc.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for Mining Association Rules. In:

Proceedings of the 20th International Conference on Very Large Data Bases, 487–499.

Yao, H., & Hamilton, H.J. (2006). Mining Itemset Utilities from Transaction Databases. Data

Knowledge Engineering, 59(3), 603-626.

Lin, Y.C., Wu, C.W., & Tseng, V.S. (2015). Mining High Utility Itemsets in Big Data. In:

Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham,

649-661.

Chen, C.C., Tseng, C.Y., & Chen, M.S. (2018). Highly Scalable Sequential Pattern Mining

Based on MapReduce Model on the Cloud. In IEEE International Congress on Big

Data, 310-317.

Vo, B., Nguyen, H., Ho, T.B., & Le, B. (2009). Parallel method for mining high utility itemsets

from vertically partitioned distributed databases. In International Conference on

Knowledge-Based and Intelligent Information and Engineering Systems, Springer,

Berlin, Heidelberg, 251-260.

Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., & Streit, A. (2002). On

advantages of grid computing for parallel job scheduling. In 2nd IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGRID'02), 39-39.

Dolbeau, R., Bihan, S., & Bodin, F. (2007). HMPP: A hybrid multi-core parallel programming

environment. In Workshop on general purpose processing on graphics processing units

(GPGPU 2007), 28, 1-5.

Zhang, N., Chen, Y.S., & Wang, J.L.(2010). Image Parallel Processing Based on GPU. In

IEEE 2nd International Conference on Advanced Computer Control, 367-370.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters.

Communication ACM, 51(1), 107-113.

Borthakur, D. (2007). The hadoop distributed file system: Architecture and design. Hadoop

Project Website, 11, 21.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., MaCauley, M., & Stoica, I. (2010).

Resilient Distributed Datasets: A Fault-Tolerant abstraction for In-memory Cluster

Webology, Volume 17, Number 2, December, 2020

42 http://www.webology.org

Computing. Proceedings of the 9th USENIX Conference on Networked Systems Design

and Implementation.

Subramanian, K., Kandhasamy, P., & Subramanian, S. (2013). A Novel Approach to Extract

High Utility Itemsets from Distributed Databases. Computing and Informatics, 31(6),

1597-1615.

Lin, J.C.W., Li, T., Fournier-Viger, P., Hong, T.P., Zhan, J., & Voznak, M. (2016). An

Efficient Algorithm to Mine High Average-Utility Itemsets. Advanced Engineering

Informatics, 30(2), 233-243.

Chen, Y., & An, A. (2016). Approximate Parallel High Utility Itemset Mining. Big Data

Research, 6, 26-42.

Zihayat, M., Hut, Z.Z., An, A., & Hut, Y. (2016). Distributed and Parallel High Utility

Sequential Pattern Mining. In IEEE International Conference on Big Data (Big Data),

853-862.

Tamrakar, A. (2017). High Utility Itemsets Identification in Big Data (Doctoral dissertation.

University of Nevada, Las Vegas).

Sethi, K.K., Ramesh, D., & Edla, D.R. (2018). P-FHM+: Parallel high utility itemset mining

algorithm for big data processing. Procedia computer science, 132, 918-927.

Nguyen, T.D., Nguyen, L.T., & Vo, B. (2018). A parallel algorithm for mining high utility

itemsets. In International Conference on Information Systems Architecture and

Technology, Springer, Cham, 286-295.

Sethi, K.K., Ramesh, D., & Sreenu, M. (2019). Parallel high average-utility itemset mining

using better search space division approach. In International Conference on Distributed

Computing and Internet Technology, Springer, Cham, 108-124.

Dalal, S., & Dahiya, V. (2018). Review of High Utility Itemset Mining Algorithms for Big

Data. In: Journal of Advanced Research in Dynamical and Control Systems– JARDCS,

10(4),274-283.

Yun, U., Ryang, H., & Ryu, K.H. (2014). High Utility Itemset Mining with Techniques for

Reducing Overestimated Utilities and Pruning Candidates. Expert System Application,

41(8), 3861–3878.

Zihayat, M., Wu, C.W., An, A., & Tseng, V.S. (2015). Mining high utility sequential patterns

from evolving data streams. In Proceedings of the ASE Big Data & Social Informatics,

1-6.

Sandeep, D., & Vandna, D. (2020). Big Data Mining: Current Status and Future

Prospects. International Journal of Advanced Science and Technology, 29(3),

4659- 4670.

Zaki, M.J. (2001). Parallel Sequence Mining on Shared-Memory Machines. Journal of Parallel

& Distributed Computing, 61(3), 401–426.

Yang, X.Y., Liu, Z., & Fu, Y. (2010). Mapreduce as a Programming Model for Association

Rules Algorithm on Hadoop. 3rd International Conference on Information Sciences and

Interaction Sciences, 99–102.

Krishnamoorthy, S. (2015). Pruning Strategies for Mining High Utility Itemsets. Expert

Systems with Applications, 42(5), 2371-2381.

Webology, Volume 17, Number 2, December, 2020

43 http://www.webology.org

Dalal, S., & Dahiya, V. (2019). Various Research Opportunities in High Utility Itemset

Mining. International Journal of Recent Technology and Engineering (IJRTE), 8(4),

2455-2461.

Tseng, V.S., Wu, C.W., Fournier-Viger, P., & Philip, S.Y. (2015). Efficient algorithms for

mining top-k high utility itemsets. IEEE Transactions on Knowledge and data

engineering, 28(1), 54-67.

Apache Software Foundation. http://www.apache.org/

Hadoop. http://hadoop.apache.org/

IBM Quest Data Mining Project, Quest Synthetic Data Generation Code.

(https://sourceforge.net/projects/ibmquestdatagen/)

Spark. http://spark.apache.org/

