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Abstract 

 
Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in 

the form of applications which creates advancement in day to day life. This technological 

advancements overcomes the traditional computing methods which increases communication 

delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is 

evolving as a scenario for improving in these limitations so as to provide better output to end 

users. This paper proposed a secure and energy-efficient computational offloading scheme 

using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A 

strategy for computation offloading based on the prediction of tasks, and the migration of tasks 

for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm 

help to optimize the edge computing offloading model. Experimental results show that our 

proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently 

decrease total task delay and energy consumption, and bring much security to the devices due 

to the firewall nature of LSTM. 
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Introduction 

 

Smart mobile systems have become widely utilized in everyday life over recent years which 

includes smartphones, tablet computers, wearable devices (T.Q. Dinh et al. (2017)), smart 

cars, etc. The popularity of mobile cellular connectivity and fast 5G technology 

development has made them a widespread presence. The growing mobile traffic and the 
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complex computer systems provide tremendous difficulties for networking and computer 

resources. In recent decades, cloud technology and wireless communication have advanced 

considerably. Although local computer technology is only able to operate a few simple 

computing tasks, for reasons such as poor computing and mobile device storage capacity 

and limited battery capacity in hardware design. The uplines of the Cloud can be used to 

complete computer-intense and data-intensive tasks (S. Agarwal et al. (2014)). That implies 

cloud storage, computation, and communication resources can remedy the inadequacies of 

local devices in these areas. This is the scenario if the volume of users is low or the kind of 

application is simple. 

 

In addition, a high amount of network infrastructure resources in multi-user mode is 

required to send computer activities from mobile devices to the cloud, as it deals with a 

huge amount of data. It readily exceeds the security load threshold of the network, causes 

network congestion, and causes an unacceptable delay in communication (YC Hu et al. 

(2015)). Therefore, conventional cloud offloading techniques are not suitable for critical 

computational tasks in the age of 5G. New computer modes are needed to fulfill the low 

time, dependability, and large complexity requirements of these computational tasks                    

(Y. Cao et al. (2014)). ETSI Mec ISG (Industry Specification Group) is a revolutionary 

computing method composed of six members which include Nokia and Huawei (X. Chen 

et al. (2016)). Today, 5G research became the main theory as well as a conceptual 

framework. Cloud and cloud storage in areas close to a mobile user are supported by edge 

computing, providing 5G services to mobile devices using a server at the edge of the 

internet (which include Wi-Fi access point), routers, base stations, switches, cloud 

platforms or data centers, as well as any other storage and computational capability 

enabled devices. 

 

 
Figure 1 Mobile Edge Computing architecture 
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Although edge computing is accepted as an additional mode in cloud computing, the 

simultaneous processing of data requests and calculation tasks still creates a significant 

demand on intelligent communication systems in the age when 5G mobile communications 

are being commercialized (M. Chen et al. (2019); M. Chen et al. (2018); J. Feng et al. 

(2018); G. Orsini et al. (2016)). Intelligent gadgets have varied computing capabilities. 

There are now numerous kinds of intelligent apps. But the applications include a large 

number of computing activities and data types, which include enormous unstructured data 

like text, audio, video, and pictures and structured data such as digital signals. And all these 

complex calculation jobs typically may be split into several parallel processing sub-tasks. 

Dynamically altering network resources. In MEC design, computer services are limited by 

a wide number of unsafe factors, for example, the volume of mobile users (calculation 

workloads), network security, communications, and resource allocation policies F. Zhang 

et al. (2019); S. Yu et al. (2017); P. Dai et al. (2019); J.C. Guevara et al. (2020)). The issue 

in current MEC research is how to constantly deliver services with high dependability and 

minimal latency for consumers by jointly optimizing the aforementioned factors. The edge 

cloud's computing capability is diverse and limited. So, when work is transferred onto the 

edge cloud, the computational complexity is be a problem. At this point, we need to study 

the different techniques of computational task offloading to the cloud which respond to the 

dynamic changes of computational resources. In addition, the computer capability of the 

edge server is not sufficient for all sorts of calculation jobs, in comparison with the 

conventional cloud server. Therefore, if the traffic statistics of the job vary dynamically, it 

is important to address completely the issue of computational migration (L. Ale et al. 

(2019); M. Al-Khafajiy (2018)). 

 

It is therefore important that finite and diverse computing resources are fully utilized on the 

edge cloud to develop an improved smart offloading approach and decrease processing 

latency. In order to develop the optimal offloading strategy for the initial time, when mobile 

consumers request a service, it is important to make a preliminary estimate of the volume 

of work required to increase the efficiency of the offloading strategy. Deep Learning (DL) 

is an advanced approach and technique in the field of data analysis and data processing. As 

an IT industry, deep-learning technological advances enable a range of non-structured data 

gathered from mobile devices to be processed and extracted in-depth (especially if a 

significant quantity of historical data is acquired), therefore providing MEC's system with 

smarter cognitive services (M. Chen et al. (2019)). Advanced computing employs 

algorithms like RNN (M. Chen et al. (2018)) as the newest optimal prediction technology 

to deliver cognitive capability for network services, loudening services, traffic, and others 

to enhance the quality of experience (QoE) and quality of service (QoS). Furthermore, Edge 
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Node and DL technology are anticipated to foster edge computing growth through the 

provision of distributed DL services. 

 

Challenges of Existing Systems 

 

With the current system, several obstacles are categorized as 7 major problems that are 

essentially having natural dynamic behavior and need to be dealt with dynamically. Due to 

its high data transfer rates the absence of pre-defined information to resolve problems, the 

improvement of associated offloading metrics, the application of more advanced methods 

of machine learning such as reinforcement learning derivatives and online learning, or 

a combination of machine learning approaches. The 7 main challenges are listed below; 

 

a. Scheduling 

b. Interoperability 

c. Mobility  

d. Scalability 

e. Security 

f. Fault tolerance 

g. Partitioning. 

 

Objectives 

 

This paper focuses on a secure and energy-efficient offloading MEC using a deep learning 

method in which the following keynotes are mentioned below; 

 

a. Two aspects of infrastructure and logic are used for designing new MEC offload-

based computing architecture. 

b. An LSTM algorithm-based computational task prediction method is being 

suggested for the MEC framework by integration of Deep Learning, edge 

computing, and local computing. 

c. For mobile devices, the optimum offloading computing approach is given based 

on workload prediction. 

d. A reinforcement learning based routing of these predicted tasks to edge servers. 

e. Finally, this is compared with existing systems to analyze how much our 

proposed system (IEEOA) enhances the flavor of security and energy 

consumption. 

 

Organization of paper: Section 2 analyses and investigates similar research on the 

offloading and scheduling of computations and highlights their limitations. Section 3 then 
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provides a intelligent computer-based offloading MEC architecture which proposes  

LSTM-based computational prediction method, the computing offloading strategy for a 

mobile device to migrate computing tasks into edge cloud as well as their routing through 

reinforcement learning. Section 4 provides a MEC environment for simulation and tests are 

carried out with time delays to analyze the impact of the computation offloading and 

intelligent task prediction method. 

 

Related Works 

 

Orsini et al. (G. Orsini et al. (2016)) highlight that partially offloading involves estimates 

of the cost of computation of each component for the application, therefore placing extra 

pressure on calculating resources and reserves of energy. Nevertheless, such computations 

may intelligently select the optimum collection of components to be offloaded so that the 

volume of data transmission is minimized and latency, as well as overall energy 

consumption, are reduced. We examine partial offloaded schemes in the proposed work. 

Hence partial offloading decreases delay energy consumption and needless overhead 

transmission relative to the complete discharge system. 

 

The collaborative edge offloading technique suggested by Al-Khafajiy et al. enables the fog 

node collaboration for big data processing using pre-defined fog characteristics. The fact 

that all essential information about the Fog Node capabilities (i.e. processors) is known in 

advance makes this technique efficient in processing data at the edge level on a timely basis. 

However, this technique misses the fog nodes' energy usage, which is not energy efficient. 

 

Li et al. (2018) propose a deep reinforcement learning strategy to strengthening the entire 

offloading system. Nevertheless, global minima may not be ensured in reinforcement 

learning techniques because of its unexpected nature of learning. Thus, deep learning 

techniques observed in recent years have become quite prominent in the computational 

offloading process in MEC. Fast precise decision-making and greater computing speed with 

trained models are the significant benefits of deep learning. Using deep learning the learned 

model can prevent exhaustive computations to find the best solution. Anas et al. (2017) take 

computational utilization and access probability into consideration and develop a 

performance model based on queuing theory to address the workload balancing between 

service providers within a federated cloud environment. 

 

Ma et al. (2020) examine the collaboration between edge nodes and study workload 

scheduling to reduce the traffic and response time in mobile edge computing. They offer a 

heuristic algorithm for the scheduling of workload based on water-filling to reduce 
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complexity in computation. Fuzzy logic is an efficient approach for solving the edge 

computing workload scheduling problem described in recent years. 

 

In order to tackle the problem of workload orchestration in edge computing systems, 

Sonmez et al. (2019) adopt a fuzzy logic method. The approach of the offloaded tasks takes 

into account the characteristics and the present state of computational as well as networking 

resources and utilizes fuzzy rules to specify networking, computing, and task-specific 

workload orchestration activities to make the decision on allocating location for the 

workload execution in the overall edge computing system. 

 

The Foggy Software Platform for the orchestration of loads and resources in the fog 

computing environment is proposed by Santoro et al. (2017). It plans to do activities on the 

basis of computing, storage, or network resources. 

 

System Architecture 

 

We are proposing a novel MEC design based on intelligent computing offloading to cope 

with difficulties of large data exchange, power consumption, and an unacceptable latency 

in computational offloading in the cloud computation model as illustrated in Figure 2. 

 

Mobile, smartphones, and tablet computers (M. Chen et al. (2017); Y. He et al. (2018); J. 

Liu et al. (2019); L.T. Tan et al. (2018); L. Huang et al. (2018)) devices interact with the 

cloud server directly in conventional cloud computing mode, collect local user data and 

immediately pass computation workloads onto the remote cloud. To improve data transfer 

and to avoid latency an intermediary edge cloud layer is created in the cloud architecture 

between MEC Architecture and local devices used for processing and communications. 

Multi user Edge servers, which are also known as edge nodes, like the base station, wireless 

access point, and routers can connect with local mobile devices through wireless media and 

share tasks via the pull links. Cloud servers are able to deliver deep learning services 

featuring powerful processing as well as storage resources. The integration of cloud 

technology and deep learning is considered a key component to increase intelligence of 

edge cloud computing by making them improving energy efficiency. 
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Figure 2 Proposed Architecture 

 

Mobile users only can do a few basic computer activities locally, owing to restricted 

computing and storage capacity of local devices. Edge cloud would be offloaded more 

difficult tasks over the wireless channel. Edge computer nodes will decide if this job is to 

be handled locally or moved to other nodes, taking into account the expected task 

complexity, node computing capacity, power reserve nodes, as well as other variables. For 

more complex applications, service data are typically transmitted directly over the distant 

cloud. Some computer nodes also schedule the cloud for computational activities. This 

ensures intelligent services at the cost of communication delays. 

 

The purpose and benefits of developing a smart MEC architecture computational 

offloading is to diverse computing jobs and for heterogeneous data applications. If 

computational activities can be forecast in advance for the type, size, and computing 

resources based on prediction, one cn determine whether to offload or not. Since network 
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communications and computer resources which are changing dynamically an optimal 

offloading approach can help enhance QoE from a variety of aspects, including computation 

latency and complexity. Optimized transfer or routing of tasks can help minimize network 

access congestion. The MEC architecture, which is based on intelligent task predictions and 

computational offloading, can enable local devices to conduct more sophisticated 

processing while reducing the load on the distant cloud. Thus a deep learning approach 

using LSTM technique to compute task prediction together with a deep reinforcement 

learning based routing for channel allocation can easily carry out multiple task transmission 

from local devices to edge node with the lowest energy consumption with appropriate 

computational offloading. 

 

Algorithm of LSTM 

 

The offloading approach cannot ensure minimum latency since edge computing 

and conventional cloud computing offloading modes only consider direct offloading of 

computational workloads. It's not smart enough, therefore. Thus, in this work, three 

elements optimized and enhanced the loading method of edge computing: (1) Algorithm 

based on LSTM computing task prediction. In order to forecast functionalities and to help 

judge computer delays in the offload approach, the in-depth learning approach is applied. 

(2) Mobile devices computer offload technique based on job forecasting. Once the LSTM 

algorithm has been utilized for precise task traffic data, an in-depth assessment is carried 

out to offload performance based on various aspects of edge cloud computation nodes, with 

the aim of achieving the optimal offload strategy. (3) Migration of edge cloud scheduling 

scheme of computing tasks. A new task migration system is being introduced to improve 

computation offloading technique. 

The process flow is as illustrated in Figure 3 for the task prediction. 

 

 
Figure 3 Process flow of computational offloading task size prediction using LSTM 
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Computation Task Size Prediction using LSTM 

 

As shown in Figure 3, K-mobile users are expected to offload computing workloads to edge 

cloud computing nodes connected to their mobile networks for processing. To develop a 

better offloading technique, we must first determine the traffic data for each computing 

activity, also known as the computation offloading data volume. Unlike previous techniques 

for the description of computer functionality, a profound LSTM-based learning algorithm 

is used to anticipate computational tasks (Yiming Miao et al. (2020)). Set Vk ∈ {V1, V2, 

VK}, the data size. Wf, WC, bf, bC, are utilized to describe the biases and weights of 

forgetting and input gates, σ and tanh are employed as activation functions in multi-level 

LSTM architecture. Forget gate can be specified as 

 

fk = σ(Wf · [hk−1, Vk]+bf ) 

 

The input gate is defined as 

 

Ck = fk ∗Ck−1+σ(Wi · [hk−1, Vk] + bi) ∗ tanh(WC · [hk−1, Vk] + bC) 

 

The hidden layer output may be specified as hk = σ(Wo · [hk−1, Vk] + bo) ∗ tanh(Ck). Finally, 

a complete connection layer combines the previously extracted characteristics to produce 

the V˜k ∈ {V˜1, V˜2, . . . , V˜K } output sequence. In this case, V˜k denotes the expected data 

amount for computation task k. This anticipated data will be used in a subsequent compute 

offloading technique. As a result, the algorithm's optimization aim is to increase task data 

size prediction accuracy (|V˜k − Vk| ∝ 0) as much as feasible. 

 

Computational Offloading Strategy 

 

A mobile device can specify an offloading mechanism for a computing task based on its 

processing capabilities. Tasks are often carried out in either locally or remotely performed 

at the cloud edge platform depending on the decision variable. The number of bits that the 

computation job k is being offloaded is represented by the task offloading variable βk               

[0, 1]. When k is 0, the job should be handled locally while k is 1, job has to be handled on 

the edge cloud. 

 

If βk ∈ (0, 1), 𝛽𝑘�̃�𝑘 should be sent to the edge cloud for processing, whereas (1 − 𝛽𝑘�̃�𝑘) 

should be handled locally. To execute an offloading operation, we must first determine the 

quantity of data that needs to be offloaded as well as the essential features of edge cloud 

computing nodes that are linked to a mobile user. Consider the total frequency of CPU 

cycles required by edge computing node i to perform job k, which is 𝐶𝑖,𝑘, and the computing 
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frequency of task k, which is 𝐹𝑖,𝑘. As a consequence, the time 𝑡𝑖,𝑘
𝑝𝑟𝑜𝑐

 that node i needs to 

process k may be calculated as follows. 

 

𝑡𝑖,𝑘
𝑝𝑟𝑜𝑐 =

𝛽𝑘�̃�𝑘𝐶𝑖,𝑘

𝐹𝑖,𝑘
 

 

The uplink wireless channel is used for mobile device offloading. As a result, the maximum 

uplink transmission rate 𝑈𝐿𝑖,𝑘  (M. Chen et al. (2018)) for task offloading is expressed using 

Shannon's theorem: 

 

𝑈𝐿𝑖,𝑘 = 𝐵𝑙𝑜𝑔2 (1 +
𝑝𝑘ℎ2

𝜎2 + 𝑤𝑖,𝑘
) 

 

where B denotes channel bandwidth, σ2 denotes noise power, 𝑝𝑘 denotes mobile device 

transmitting power, h2 denotes wireless channel gain, and 𝑤𝑖,𝑘  denotes the power of 

interference during offloading. 

 

The transmission latency 𝑡𝑖,𝑘
𝑢𝑝 of task k may be calculated as follows: 

 

𝑡𝑖,𝑘
𝑢𝑝 =

𝛽𝑘�̃�𝑘

𝑈𝐿𝑖,𝑘
 

 

If a mobile device sends a computing job k to the edge cloud, the total delay 𝑇𝑘
𝑒𝑑𝑔𝑒 

 maybe 

defined as: 

𝑇𝑘
𝑒𝑑𝑔𝑒 

= 𝑡𝑖,𝑘
𝑢𝑝 + 𝑡𝑖,𝑘

𝑝𝑟𝑜𝑐 + 𝑡𝑖,𝑘
𝑑𝑜𝑤𝑛  

 

Where, 𝑡𝑖,𝑘
𝑑𝑜𝑤𝑛  means computing delay. The results data package is often small, and the 

downlink between a mobile user and an edge node has enough bandwidth. This means that 

the downlink transmission delay may be ignored. 𝑇𝑘
𝑒𝑑𝑔𝑒 

 can so be simplified as: 

 

𝑇𝑘
𝑒𝑑𝑔𝑒 

= 𝑡𝑖,𝑘
𝑢𝑝 + 𝑡𝑖,𝑘

𝑝𝑟𝑜𝑐 =
𝛽𝑘𝑉�̃�

𝑈𝐿𝑖,𝑘
+

𝛽𝑘𝑉�̃�𝐶𝑖,𝑘

𝐹𝑖,𝑘
 

 

At the present, the following is the general equation for the overall delay in the processing 

of computation task k: 

 

𝑇𝑘 = 𝑇𝑘
𝑒𝑑𝑔𝑒

+ (1 − 𝛽𝑘)𝑇𝑙𝑜𝑐𝑎𝑙 =
𝛽𝑘𝑉�̃�

𝑈𝐿𝑖,𝑘
+

𝛽𝑘𝑉�̃�𝐶𝑖,𝑘

𝐹𝑖,𝑘
+ (1 − 𝛽𝑘)𝑇𝑘

𝑙𝑜𝑐𝑎𝑙  
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The total delay in the offloading of the computation is related to the task data size V, the 

computational resource R on the mobile device, and Q is computing resource on the edge 

of the cloud, according to the above-mentioned formula. As a minimum delay, the above 

derivative procedure may be simplified: 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝑇𝑘 ∣ �̃�𝑘, 𝑅𝑘, 𝑄𝑖,𝑘) 

 𝛽𝑘 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇𝑘 ≤ 𝑇𝑘
𝑙𝑜𝑐𝑎𝑙  

 

Total Energy consumption ECi, due to delay can be written as: 

 

ECi = Elocali + Edeci, βk = 0, 

 ECi= ERemotei + Edeci, βk = 1. 

 

Total cost can be computed by combining the cost incurred for time delay in decision 

making and energy consumed for task scheduling. 

 

Total cost=α(Elocali + Edeci)+Tk 

 

(𝑐𝑖) represents the local cost when 𝑐𝑖 executes locally on UE and (𝑐𝑖) is the remote cost 

when 𝑐𝑖 executes remotely on MES. 

 

(𝑐𝑖) can be calculated as: 

 

𝑓𝑐𝑙(𝑐𝑖) = 𝛿1(
𝐿𝑙𝑖 + 𝐿𝑑𝑖

𝐿𝑚𝑎𝑥
) + 𝛿2(

𝐸𝑙𝑜𝑐𝑎𝑙𝑖 + 𝐸𝑑𝑒𝑐𝑖

𝐸𝑚𝑎𝑥
),  

 

where δ1 and δ2 are the weighting coefficients and Lmax is the total delay time. 

 

Cost for remote execution can be calculated as 

 

 (𝑐𝑖)= 𝛿1(
𝐿𝑙𝑖+𝐿𝑑𝑖

𝐿𝑚𝑎𝑥
) + 𝛿2(

𝐸𝑙𝑜𝑐𝑎𝑙𝑖+𝐸𝑑𝑒𝑐𝑖

𝐸𝑚𝑎𝑥
)+Tsch  

 

where Tsch is the scheduling time delay. 

 

Computational Task Migration 

 

Figure 2 shows that at the edge cloud several computer nodes serving a mobile network are 

typically present. This is because the coverage of each node is varied and there are various 

objects to be served. 
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If a system problem, hardware damage, or excessive load happens on a node while a 

computation job is running, the computation offloading or continuing work will be 

disturbed. A new approach to help calculates the migration task across clouds is necessary 

at this moment. Task k to N subtasks, that is to say, k = (k1, k2, . . . , kN ). The data size 

may then be stated for all task subtasks k as follows 

 

{ϕk1 , ϕk2 , . . . , ϕkN } 

 

Sub-tasks are assumed to be no longer divisible and a particular task has to be completed 

fully on a computer node. If subtasks 1 to n are performed on node i, subtasks n + 1 to N 

are migrated to j node for execution, the migration delay for n + 1 to N to j node may be 

stated as follows: 

 

𝑡𝑖,𝑗
𝑚𝑖𝑔

=
∑  𝑁

𝑛  𝜑𝑘𝑒

𝑟𝑖,𝑗
 

 

The delay in the migration of subtasks n+1 to N of node j is: 

 

𝑡𝑗,𝑘
𝑝𝑟𝑜𝑐 =

∑  𝑁
𝑛  𝜑𝑘𝑒

𝐶𝑗,𝑘

𝐹𝑗,𝑘
 

 

The standard expression for the overall delay of a computation migration task may also be 

derived: 

𝑇𝑘 = (1 − 𝛼𝑘)𝑇𝑙𝑜𝑐𝑎𝑙 + 𝑇𝑖,𝑘,𝑛
𝑒𝑑𝑔𝑒 

+ 𝑡𝑖,𝑗,𝑘,𝑛
𝑚𝑖𝑔

+ 𝑡𝑗,𝑘,𝑛
𝑝𝑟𝑜𝑐

 

 

Once the task is predicted using LSTM, these resources or can say tasks should be routed 

using a routing mechanism in which here we use reinforcement learning method (J. Li et 

al. (2020); S. Wang et al. (2018); J. Chen et al. (2019); X. Fu et al. (2019)) for allocation. 

In general terms, reinforcement learning is the challenge of learning, in a dynamic 

environment, to attain an objective through interaction. The learning entity that takes 

measures is termed an agent. As demonstrated in Figure 4, the agent continuously interacts 

with the environment through actions and rewards. The objective of the agent is to test 

alternative sequences of action so that the reward earned is maximized over time. A key 

part of reinforcement learning algorithms is the ability to learn from delayed rewards. An 

agent must carry out a certain set of activities in certain situations before receiving a reward. 

Agent must overcome the issue of the temporary credit assignment to learn such a sequence, 

i.e. an agent must decide which states are accountable for the reward obtained in the action 

sequence. 
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Figure 4 Agent-Environment Interactions 

 

To determine the optimum sequence of activities by combining trial and error methods in a 

setting that maximizes the reward gained over time. Because they are not developed on 

input and output pairs to define the best action at each stage, reinforcement learning 

algorithms vary from supervised learning algorithms. Instead, the benefits obtained directly 

them to the objective. This means that the reward obtained following each step sets out the 

problem to be resolved completely. Q learning method is used to solve the scenario. Once 

Q table is initialized actions are selected and performed and is updated based on rewards to 

determine and learn best route towards the destination. 

 

IEEOA Algorithm 

 

Input: Nodemin, Nodemax, Data size, Decision variable. 

Output: Routing Decision and routing of tasks. 

1: Initialize the Q-table, state space, action space and Qvalues. 

2: for Mobile devices ranging from n = Nodemin ... Nodemax do 

3: Observe current Network utilization, Bandwidth, Tasksize  

4: for each edge sever n = 1...q+1 do 

5: find Minimum loaded edge server, Edgemin and create an authentication mechanism. 

6: end for 

7: Identify the key indicators to build current state St 

8: Store all running states to fill state space S where St ∈ S 

9: if offloading required then agent takes new route that has not been selected before to 

obtain higher reward; 

10: else agent takes the best route that has already observed so far. 

11: After take action at, receive the reward R and update Q-values: 

13: if destination is not available, then create acknowledgment and update the information. 

14: end if 

15: if destination is available then transfer the task to edge server and execute task. 
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Simulation Results 

 

For this model to be implemented, the hardware specification such as Windows 10 OS, 

NVIDIA GeForce GTX 1650 graphic processor, 9th generation i5 Core and 512 SSD. Also, 

the programming language used for building this model is python under the Google collab 

platform. The proposed model (IEEOA) is compared with other existing offloading 

techniques such as (i) With out Offloading (ii) Energy Efficient Deep Learning-based 

Offloading Technique (EEDOT), and (iii) Comprehensive and Energy effective                 

Deep-learning-based Offloading Technique (CEDOT). 

 

The algorithm's inputs are as follows: the LSTM module's training data set comprises 1000 

computational offloading logs for edge cloud nodes, while the test data set has 150 

computation offloading logs. There are four hidden layers are available, with 500 iterations. 

It has a batch size of 50 and a convergence loss of 0.025. To evaluate the complete process 

delay task after the deployment of various algorithms, the data size V and the data size ϕ 

for the subtasks of a computer task must be varied on a linear basis as experimental 

variables. Two techniques are chosen for comparative studies in order to assess the 

computation offloading methodology based on task prediction: (1) On mobile devices, the 

computing work must be performed directly. There is no transmission delay in this mode, 

and the task's overall duration is mostly due to computing delays. (2) Mobile devices must 

offload all computing activities to linked edge computing nodes for execution. The overall 

delay for the job in this manner comprises not only communication delays, but also 

computation delay, queueing delay, and other factors. 

 

Figure 5 depicts an examination of energy utilization of a UE with a fluctuating data size. 

The energy utilization of IEEOA is the least since it considers the appropriate best routes 

alongside the offloading strategy. 

 

 
Figure 5 Energy consumption vs. No of nodes 
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Figure 6 depicts the progression of total task latency as data volume grows in three distinct 

offloading techniques. It can be observed that, given the current state of our local hardware, 

the computational capacity of mobile devices is insufficient to perform tasks involving huge 

amounts of data. As a result, local computing is faster when the data amount is less. Local 

computation time will rise in a nonlinear fashion as data size grows, which is inconvenient 

for services that are sensitive to delay. Small data size works against the total delay 

optimization because of the network transmission latency in edge computing offloading 

mode. The benefit in the computational capability of edge computing nodes, on the other 

hand, might be reflected as data size grows. Local computing, edge computing, and subtask 

migration may all be integrated into our approach when considering the subtask forms of 

computation tasks. In certain ways, an effective computation offloading technique can be 

developed for jobs with various data sizes in order to reduce the overall task latency. 

 

  
Figure 6 Latency of various methods vs. Data size 

 

Figure 7 presents total cost depending on various data sizes. As our system uses an optimal 

cost effective strategy which depending on time delay. However, the proposed technique 

selects the offloading policy with minimum cost for offloading learning optimal routes. 

 

  
Figure 7 Data size vs total cost 
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Figure 8 depicts a graphical representation of the delay of various offloading techniques 

with respect to IEEOA on depending on efficiency as the number of nodes increases, our 

model took comparatively less time to execute. 

 

  

Figure 8 Delay vs. No of nodes  

 

Conclusion 

 

In response to the shortcomings of traditional local computing, cloud computing, and edge 

computing modes, a novel intelligent computation offloading-based MEC architecture with 

a combination of deep learning and reinforcement learning approaches is suggested in this 

paper. The recommended architecture is used to build the compute offloading and task 

migration technique based on task prediction together with routing methods. From the 

perspective of the LSTM-based algorithm, the prediction-based computational offloading 

strategy, and a computational job migration for the edge cloud scheme, the optimal 

offloading technique for computation is explained. Unlike local computing and a single 

edge offloading approach, our methodology successfully decreases overall task delay and 

increases energy efficiency by selecting optimal offloading strategy and allowing high data 

size offloaded jobs to be routed based on learning aspects which improves allocation of 

tasks to the edge server in a quick manner. Performance tests are done using the algorithm 

improves overall energy efficiency and reduces latency of tasks. 
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Table 3 Abbreviations 
MEC Mobile Edge Computing 

UE User Equipment’s 

EU End Users 

DL Deep Learning 

AI Artificial Intelligence 

RL Reinforcement Learning 

LSTM Long Short Term Memory 

RNN Recurrent Neural Network 

MES Mobile Edge Server 

EC Edge Computing 

MCC Mobile Cloud Computing 

DRL Deep Reinforcement Learning 

DNN Deep Neural Network 

QoS Quality of Service 

TOT Total Offloading Technique  

EEDOT Energy Efficient Deep Learning-based Offloading Technique 

CEDOT Comprehensive and Energy effective Deep-learning-based Offloading Technique 
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