
Webology, Volume 18, Number 2, December, 2021

856 http://www.webology.org

A LSTM Approach for Secure Energy Efficient Computational

Offloading in Mobile Edge Computing

S. Anoop

Research Scholar, Department of CSE, Noorul Islam Centre for Higher Education, Thuckalay,

Kumaracoil, Tamil Nadu, India. E-mail: anoopsivasankar@gmail.com

Dr.J. Amar Pratap Singh

Professor, Department of CSE, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil,

Tamil Nadu, India.

Received April 30, 2021; Accepted August 28, 2021

ISSN: 1735-188X

DOI: 10.14704/WEB/V18I2/WEB18359

Abstract

Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in

the form of applications which creates advancement in day to day life. This technological

advancements overcomes the traditional computing methods which increases communication

delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is

evolving as a scenario for improving in these limitations so as to provide better output to end

users. This paper proposed a secure and energy-efficient computational offloading scheme

using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A

strategy for computation offloading based on the prediction of tasks, and the migration of tasks

for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm

help to optimize the edge computing offloading model. Experimental results show that our

proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently

decrease total task delay and energy consumption, and bring much security to the devices due

to the firewall nature of LSTM.

Keywords

Deep Learning, Deep Neural Network, Long Term Short Memory, Mobile Edge Computing.

Introduction

Smart mobile systems have become widely utilized in everyday life over recent years which

includes smartphones, tablet computers, wearable devices (T.Q. Dinh et al. (2017)), smart

cars, etc. The popularity of mobile cellular connectivity and fast 5G technology

development has made them a widespread presence. The growing mobile traffic and the

Webology, Volume 18, Number 2, December, 2021

857 http://www.webology.org

complex computer systems provide tremendous difficulties for networking and computer

resources. In recent decades, cloud technology and wireless communication have advanced

considerably. Although local computer technology is only able to operate a few simple

computing tasks, for reasons such as poor computing and mobile device storage capacity

and limited battery capacity in hardware design. The uplines of the Cloud can be used to

complete computer-intense and data-intensive tasks (S. Agarwal et al. (2014)). That implies

cloud storage, computation, and communication resources can remedy the inadequacies of

local devices in these areas. This is the scenario if the volume of users is low or the kind of

application is simple.

In addition, a high amount of network infrastructure resources in multi-user mode is

required to send computer activities from mobile devices to the cloud, as it deals with a

huge amount of data. It readily exceeds the security load threshold of the network, causes

network congestion, and causes an unacceptable delay in communication (YC Hu et al.

(2015)). Therefore, conventional cloud offloading techniques are not suitable for critical

computational tasks in the age of 5G. New computer modes are needed to fulfill the low

time, dependability, and large complexity requirements of these computational tasks

(Y. Cao et al. (2014)). ETSI Mec ISG (Industry Specification Group) is a revolutionary

computing method composed of six members which include Nokia and Huawei (X. Chen

et al. (2016)). Today, 5G research became the main theory as well as a conceptual

framework. Cloud and cloud storage in areas close to a mobile user are supported by edge

computing, providing 5G services to mobile devices using a server at the edge of the

internet (which include Wi-Fi access point), routers, base stations, switches, cloud

platforms or data centers, as well as any other storage and computational capability

enabled devices.

Figure 1 Mobile Edge Computing architecture

Webology, Volume 18, Number 2, December, 2021

858 http://www.webology.org

Although edge computing is accepted as an additional mode in cloud computing, the

simultaneous processing of data requests and calculation tasks still creates a significant

demand on intelligent communication systems in the age when 5G mobile communications

are being commercialized (M. Chen et al. (2019); M. Chen et al. (2018); J. Feng et al.

(2018); G. Orsini et al. (2016)). Intelligent gadgets have varied computing capabilities.

There are now numerous kinds of intelligent apps. But the applications include a large

number of computing activities and data types, which include enormous unstructured data

like text, audio, video, and pictures and structured data such as digital signals. And all these

complex calculation jobs typically may be split into several parallel processing sub-tasks.

Dynamically altering network resources. In MEC design, computer services are limited by

a wide number of unsafe factors, for example, the volume of mobile users (calculation

workloads), network security, communications, and resource allocation policies F. Zhang

et al. (2019); S. Yu et al. (2017); P. Dai et al. (2019); J.C. Guevara et al. (2020)). The issue

in current MEC research is how to constantly deliver services with high dependability and

minimal latency for consumers by jointly optimizing the aforementioned factors. The edge

cloud's computing capability is diverse and limited. So, when work is transferred onto the

edge cloud, the computational complexity is be a problem. At this point, we need to study

the different techniques of computational task offloading to the cloud which respond to the

dynamic changes of computational resources. In addition, the computer capability of the

edge server is not sufficient for all sorts of calculation jobs, in comparison with the

conventional cloud server. Therefore, if the traffic statistics of the job vary dynamically, it

is important to address completely the issue of computational migration (L. Ale et al.

(2019); M. Al-Khafajiy (2018)).

It is therefore important that finite and diverse computing resources are fully utilized on the

edge cloud to develop an improved smart offloading approach and decrease processing

latency. In order to develop the optimal offloading strategy for the initial time, when mobile

consumers request a service, it is important to make a preliminary estimate of the volume

of work required to increase the efficiency of the offloading strategy. Deep Learning (DL)

is an advanced approach and technique in the field of data analysis and data processing. As

an IT industry, deep-learning technological advances enable a range of non-structured data

gathered from mobile devices to be processed and extracted in-depth (especially if a

significant quantity of historical data is acquired), therefore providing MEC's system with

smarter cognitive services (M. Chen et al. (2019)). Advanced computing employs

algorithms like RNN (M. Chen et al. (2018)) as the newest optimal prediction technology

to deliver cognitive capability for network services, loudening services, traffic, and others

to enhance the quality of experience (QoE) and quality of service (QoS). Furthermore, Edge

Webology, Volume 18, Number 2, December, 2021

859 http://www.webology.org

Node and DL technology are anticipated to foster edge computing growth through the

provision of distributed DL services.

Challenges of Existing Systems

With the current system, several obstacles are categorized as 7 major problems that are

essentially having natural dynamic behavior and need to be dealt with dynamically. Due to

its high data transfer rates the absence of pre-defined information to resolve problems, the

improvement of associated offloading metrics, the application of more advanced methods

of machine learning such as reinforcement learning derivatives and online learning, or

a combination of machine learning approaches. The 7 main challenges are listed below;

a. Scheduling

b. Interoperability

c. Mobility

d. Scalability

e. Security

f. Fault tolerance

g. Partitioning.

Objectives

This paper focuses on a secure and energy-efficient offloading MEC using a deep learning

method in which the following keynotes are mentioned below;

a. Two aspects of infrastructure and logic are used for designing new MEC offload-

based computing architecture.

b. An LSTM algorithm-based computational task prediction method is being

suggested for the MEC framework by integration of Deep Learning, edge

computing, and local computing.

c. For mobile devices, the optimum offloading computing approach is given based

on workload prediction.

d. A reinforcement learning based routing of these predicted tasks to edge servers.

e. Finally, this is compared with existing systems to analyze how much our

proposed system (IEEOA) enhances the flavor of security and energy

consumption.

Organization of paper: Section 2 analyses and investigates similar research on the

offloading and scheduling of computations and highlights their limitations. Section 3 then

Webology, Volume 18, Number 2, December, 2021

860 http://www.webology.org

provides a intelligent computer-based offloading MEC architecture which proposes

LSTM-based computational prediction method, the computing offloading strategy for a

mobile device to migrate computing tasks into edge cloud as well as their routing through

reinforcement learning. Section 4 provides a MEC environment for simulation and tests are

carried out with time delays to analyze the impact of the computation offloading and

intelligent task prediction method.

Related Works

Orsini et al. (G. Orsini et al. (2016)) highlight that partially offloading involves estimates

of the cost of computation of each component for the application, therefore placing extra

pressure on calculating resources and reserves of energy. Nevertheless, such computations

may intelligently select the optimum collection of components to be offloaded so that the

volume of data transmission is minimized and latency, as well as overall energy

consumption, are reduced. We examine partial offloaded schemes in the proposed work.

Hence partial offloading decreases delay energy consumption and needless overhead

transmission relative to the complete discharge system.

The collaborative edge offloading technique suggested by Al-Khafajiy et al. enables the fog

node collaboration for big data processing using pre-defined fog characteristics. The fact

that all essential information about the Fog Node capabilities (i.e. processors) is known in

advance makes this technique efficient in processing data at the edge level on a timely basis.

However, this technique misses the fog nodes' energy usage, which is not energy efficient.

Li et al. (2018) propose a deep reinforcement learning strategy to strengthening the entire

offloading system. Nevertheless, global minima may not be ensured in reinforcement

learning techniques because of its unexpected nature of learning. Thus, deep learning

techniques observed in recent years have become quite prominent in the computational

offloading process in MEC. Fast precise decision-making and greater computing speed with

trained models are the significant benefits of deep learning. Using deep learning the learned

model can prevent exhaustive computations to find the best solution. Anas et al. (2017) take

computational utilization and access probability into consideration and develop a

performance model based on queuing theory to address the workload balancing between

service providers within a federated cloud environment.

Ma et al. (2020) examine the collaboration between edge nodes and study workload

scheduling to reduce the traffic and response time in mobile edge computing. They offer a

heuristic algorithm for the scheduling of workload based on water-filling to reduce

Webology, Volume 18, Number 2, December, 2021

861 http://www.webology.org

complexity in computation. Fuzzy logic is an efficient approach for solving the edge

computing workload scheduling problem described in recent years.

In order to tackle the problem of workload orchestration in edge computing systems,

Sonmez et al. (2019) adopt a fuzzy logic method. The approach of the offloaded tasks takes

into account the characteristics and the present state of computational as well as networking

resources and utilizes fuzzy rules to specify networking, computing, and task-specific

workload orchestration activities to make the decision on allocating location for the

workload execution in the overall edge computing system.

The Foggy Software Platform for the orchestration of loads and resources in the fog

computing environment is proposed by Santoro et al. (2017). It plans to do activities on the

basis of computing, storage, or network resources.

System Architecture

We are proposing a novel MEC design based on intelligent computing offloading to cope

with difficulties of large data exchange, power consumption, and an unacceptable latency

in computational offloading in the cloud computation model as illustrated in Figure 2.

Mobile, smartphones, and tablet computers (M. Chen et al. (2017); Y. He et al. (2018); J.

Liu et al. (2019); L.T. Tan et al. (2018); L. Huang et al. (2018)) devices interact with the

cloud server directly in conventional cloud computing mode, collect local user data and

immediately pass computation workloads onto the remote cloud. To improve data transfer

and to avoid latency an intermediary edge cloud layer is created in the cloud architecture

between MEC Architecture and local devices used for processing and communications.

Multi user Edge servers, which are also known as edge nodes, like the base station, wireless

access point, and routers can connect with local mobile devices through wireless media and

share tasks via the pull links. Cloud servers are able to deliver deep learning services

featuring powerful processing as well as storage resources. The integration of cloud

technology and deep learning is considered a key component to increase intelligence of

edge cloud computing by making them improving energy efficiency.

Webology, Volume 18, Number 2, December, 2021

862 http://www.webology.org

Figure 2 Proposed Architecture

Mobile users only can do a few basic computer activities locally, owing to restricted

computing and storage capacity of local devices. Edge cloud would be offloaded more

difficult tasks over the wireless channel. Edge computer nodes will decide if this job is to

be handled locally or moved to other nodes, taking into account the expected task

complexity, node computing capacity, power reserve nodes, as well as other variables. For

more complex applications, service data are typically transmitted directly over the distant

cloud. Some computer nodes also schedule the cloud for computational activities. This

ensures intelligent services at the cost of communication delays.

The purpose and benefits of developing a smart MEC architecture computational

offloading is to diverse computing jobs and for heterogeneous data applications. If

computational activities can be forecast in advance for the type, size, and computing

resources based on prediction, one cn determine whether to offload or not. Since network

Webology, Volume 18, Number 2, December, 2021

863 http://www.webology.org

communications and computer resources which are changing dynamically an optimal

offloading approach can help enhance QoE from a variety of aspects, including computation

latency and complexity. Optimized transfer or routing of tasks can help minimize network

access congestion. The MEC architecture, which is based on intelligent task predictions and

computational offloading, can enable local devices to conduct more sophisticated

processing while reducing the load on the distant cloud. Thus a deep learning approach

using LSTM technique to compute task prediction together with a deep reinforcement

learning based routing for channel allocation can easily carry out multiple task transmission

from local devices to edge node with the lowest energy consumption with appropriate

computational offloading.

Algorithm of LSTM

The offloading approach cannot ensure minimum latency since edge computing

and conventional cloud computing offloading modes only consider direct offloading of

computational workloads. It's not smart enough, therefore. Thus, in this work, three

elements optimized and enhanced the loading method of edge computing: (1) Algorithm

based on LSTM computing task prediction. In order to forecast functionalities and to help

judge computer delays in the offload approach, the in-depth learning approach is applied.

(2) Mobile devices computer offload technique based on job forecasting. Once the LSTM

algorithm has been utilized for precise task traffic data, an in-depth assessment is carried

out to offload performance based on various aspects of edge cloud computation nodes, with

the aim of achieving the optimal offload strategy. (3) Migration of edge cloud scheduling

scheme of computing tasks. A new task migration system is being introduced to improve

computation offloading technique.

The process flow is as illustrated in Figure 3 for the task prediction.

Figure 3 Process flow of computational offloading task size prediction using LSTM

Webology, Volume 18, Number 2, December, 2021

864 http://www.webology.org

Computation Task Size Prediction using LSTM

As shown in Figure 3, K-mobile users are expected to offload computing workloads to edge

cloud computing nodes connected to their mobile networks for processing. To develop a

better offloading technique, we must first determine the traffic data for each computing

activity, also known as the computation offloading data volume. Unlike previous techniques

for the description of computer functionality, a profound LSTM-based learning algorithm

is used to anticipate computational tasks (Yiming Miao et al. (2020)). Set Vk ∈ {V1, V2,

VK}, the data size. Wf, WC, bf, bC, are utilized to describe the biases and weights of

forgetting and input gates, σ and tanh are employed as activation functions in multi-level

LSTM architecture. Forget gate can be specified as

fk = σ(Wf · [hk−1, Vk]+bf)

The input gate is defined as

Ck = fk ∗Ck−1+σ(Wi · [hk−1, Vk] + bi) ∗ tanh(WC · [hk−1, Vk] + bC)

The hidden layer output may be specified as hk = σ(Wo · [hk−1, Vk] + bo) ∗ tanh(Ck). Finally,

a complete connection layer combines the previously extracted characteristics to produce

the V˜k ∈ {V˜1, V˜2, . . . , V˜K } output sequence. In this case, V˜k denotes the expected data

amount for computation task k. This anticipated data will be used in a subsequent compute

offloading technique. As a result, the algorithm's optimization aim is to increase task data

size prediction accuracy (|V˜k − Vk| ∝ 0) as much as feasible.

Computational Offloading Strategy

A mobile device can specify an offloading mechanism for a computing task based on its

processing capabilities. Tasks are often carried out in either locally or remotely performed

at the cloud edge platform depending on the decision variable. The number of bits that the

computation job k is being offloaded is represented by the task offloading variable βk

[0, 1]. When k is 0, the job should be handled locally while k is 1, job has to be handled on

the edge cloud.

If βk ∈ (0, 1), 𝛽𝑘�̃�𝑘 should be sent to the edge cloud for processing, whereas (1 − 𝛽𝑘�̃�𝑘)

should be handled locally. To execute an offloading operation, we must first determine the

quantity of data that needs to be offloaded as well as the essential features of edge cloud

computing nodes that are linked to a mobile user. Consider the total frequency of CPU

cycles required by edge computing node i to perform job k, which is 𝐶𝑖,𝑘, and the computing

Webology, Volume 18, Number 2, December, 2021

865 http://www.webology.org

frequency of task k, which is 𝐹𝑖,𝑘. As a consequence, the time 𝑡𝑖,𝑘
𝑝𝑟𝑜𝑐

 that node i needs to

process k may be calculated as follows.

𝑡𝑖,𝑘
𝑝𝑟𝑜𝑐 =

𝛽𝑘�̃�𝑘𝐶𝑖,𝑘

𝐹𝑖,𝑘

The uplink wireless channel is used for mobile device offloading. As a result, the maximum

uplink transmission rate 𝑈𝐿𝑖,𝑘 (M. Chen et al. (2018)) for task offloading is expressed using

Shannon's theorem:

𝑈𝐿𝑖,𝑘 = 𝐵𝑙𝑜𝑔2 (1 +
𝑝𝑘ℎ2

𝜎2 + 𝑤𝑖,𝑘
)

where B denotes channel bandwidth, σ2 denotes noise power, 𝑝𝑘 denotes mobile device

transmitting power, h2 denotes wireless channel gain, and 𝑤𝑖,𝑘 denotes the power of

interference during offloading.

The transmission latency 𝑡𝑖,𝑘
𝑢𝑝 of task k may be calculated as follows:

𝑡𝑖,𝑘
𝑢𝑝 =

𝛽𝑘�̃�𝑘

𝑈𝐿𝑖,𝑘

If a mobile device sends a computing job k to the edge cloud, the total delay 𝑇𝑘
𝑒𝑑𝑔𝑒

 maybe

defined as:

𝑇𝑘
𝑒𝑑𝑔𝑒

= 𝑡𝑖,𝑘
𝑢𝑝 + 𝑡𝑖,𝑘

𝑝𝑟𝑜𝑐 + 𝑡𝑖,𝑘
𝑑𝑜𝑤𝑛

Where, 𝑡𝑖,𝑘
𝑑𝑜𝑤𝑛 means computing delay. The results data package is often small, and the

downlink between a mobile user and an edge node has enough bandwidth. This means that

the downlink transmission delay may be ignored. 𝑇𝑘
𝑒𝑑𝑔𝑒

 can so be simplified as:

𝑇𝑘
𝑒𝑑𝑔𝑒

= 𝑡𝑖,𝑘
𝑢𝑝 + 𝑡𝑖,𝑘

𝑝𝑟𝑜𝑐 =
𝛽𝑘𝑉�̃�

𝑈𝐿𝑖,𝑘
+

𝛽𝑘𝑉�̃�𝐶𝑖,𝑘

𝐹𝑖,𝑘

At the present, the following is the general equation for the overall delay in the processing

of computation task k:

𝑇𝑘 = 𝑇𝑘
𝑒𝑑𝑔𝑒

+ (1 − 𝛽𝑘)𝑇𝑙𝑜𝑐𝑎𝑙 =
𝛽𝑘𝑉�̃�

𝑈𝐿𝑖,𝑘
+

𝛽𝑘𝑉�̃�𝐶𝑖,𝑘

𝐹𝑖,𝑘
+ (1 − 𝛽𝑘)𝑇𝑘

𝑙𝑜𝑐𝑎𝑙

Webology, Volume 18, Number 2, December, 2021

866 http://www.webology.org

The total delay in the offloading of the computation is related to the task data size V, the

computational resource R on the mobile device, and Q is computing resource on the edge

of the cloud, according to the above-mentioned formula. As a minimum delay, the above

derivative procedure may be simplified:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑘 ∣ �̃�𝑘, 𝑅𝑘, 𝑄𝑖,𝑘)

 𝛽𝑘

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇𝑘 ≤ 𝑇𝑘
𝑙𝑜𝑐𝑎𝑙

Total Energy consumption ECi, due to delay can be written as:

ECi = Elocali + Edeci, βk = 0,

 ECi= ERemotei + Edeci, βk = 1.

Total cost can be computed by combining the cost incurred for time delay in decision

making and energy consumed for task scheduling.

Total cost=α(Elocali + Edeci)+Tk

(𝑐𝑖) represents the local cost when 𝑐𝑖 executes locally on UE and (𝑐𝑖) is the remote cost

when 𝑐𝑖 executes remotely on MES.

(𝑐𝑖) can be calculated as:

𝑓𝑐𝑙(𝑐𝑖) = 𝛿1(
𝐿𝑙𝑖 + 𝐿𝑑𝑖

𝐿𝑚𝑎𝑥
) + 𝛿2(

𝐸𝑙𝑜𝑐𝑎𝑙𝑖 + 𝐸𝑑𝑒𝑐𝑖

𝐸𝑚𝑎𝑥
),

where δ1 and δ2 are the weighting coefficients and Lmax is the total delay time.

Cost for remote execution can be calculated as

 (𝑐𝑖)= 𝛿1(
𝐿𝑙𝑖+𝐿𝑑𝑖

𝐿𝑚𝑎𝑥
) + 𝛿2(

𝐸𝑙𝑜𝑐𝑎𝑙𝑖+𝐸𝑑𝑒𝑐𝑖

𝐸𝑚𝑎𝑥
)+Tsch

where Tsch is the scheduling time delay.

Computational Task Migration

Figure 2 shows that at the edge cloud several computer nodes serving a mobile network are

typically present. This is because the coverage of each node is varied and there are various

objects to be served.

Webology, Volume 18, Number 2, December, 2021

867 http://www.webology.org

If a system problem, hardware damage, or excessive load happens on a node while a

computation job is running, the computation offloading or continuing work will be

disturbed. A new approach to help calculates the migration task across clouds is necessary

at this moment. Task k to N subtasks, that is to say, k = (k1, k2, . . . , kN). The data size

may then be stated for all task subtasks k as follows

{ϕk1 , ϕk2 , . . . , ϕkN }

Sub-tasks are assumed to be no longer divisible and a particular task has to be completed

fully on a computer node. If subtasks 1 to n are performed on node i, subtasks n + 1 to N

are migrated to j node for execution, the migration delay for n + 1 to N to j node may be

stated as follows:

𝑡𝑖,𝑗
𝑚𝑖𝑔

=
∑ 𝑁

𝑛  𝜑𝑘𝑒

𝑟𝑖,𝑗

The delay in the migration of subtasks n+1 to N of node j is:

𝑡𝑗,𝑘
𝑝𝑟𝑜𝑐 =

∑ 𝑁
𝑛  𝜑𝑘𝑒

𝐶𝑗,𝑘

𝐹𝑗,𝑘

The standard expression for the overall delay of a computation migration task may also be

derived:

𝑇𝑘 = (1 − 𝛼𝑘)𝑇𝑙𝑜𝑐𝑎𝑙 + 𝑇𝑖,𝑘,𝑛
𝑒𝑑𝑔𝑒

+ 𝑡𝑖,𝑗,𝑘,𝑛
𝑚𝑖𝑔

+ 𝑡𝑗,𝑘,𝑛
𝑝𝑟𝑜𝑐

Once the task is predicted using LSTM, these resources or can say tasks should be routed

using a routing mechanism in which here we use reinforcement learning method (J. Li et

al. (2020); S. Wang et al. (2018); J. Chen et al. (2019); X. Fu et al. (2019)) for allocation.

In general terms, reinforcement learning is the challenge of learning, in a dynamic

environment, to attain an objective through interaction. The learning entity that takes

measures is termed an agent. As demonstrated in Figure 4, the agent continuously interacts

with the environment through actions and rewards. The objective of the agent is to test

alternative sequences of action so that the reward earned is maximized over time. A key

part of reinforcement learning algorithms is the ability to learn from delayed rewards. An

agent must carry out a certain set of activities in certain situations before receiving a reward.

Agent must overcome the issue of the temporary credit assignment to learn such a sequence,

i.e. an agent must decide which states are accountable for the reward obtained in the action

sequence.

Webology, Volume 18, Number 2, December, 2021

868 http://www.webology.org

Figure 4 Agent-Environment Interactions

To determine the optimum sequence of activities by combining trial and error methods in a

setting that maximizes the reward gained over time. Because they are not developed on

input and output pairs to define the best action at each stage, reinforcement learning

algorithms vary from supervised learning algorithms. Instead, the benefits obtained directly

them to the objective. This means that the reward obtained following each step sets out the

problem to be resolved completely. Q learning method is used to solve the scenario. Once

Q table is initialized actions are selected and performed and is updated based on rewards to

determine and learn best route towards the destination.

IEEOA Algorithm

Input: Nodemin, Nodemax, Data size, Decision variable.

Output: Routing Decision and routing of tasks.

1: Initialize the Q-table, state space, action space and Qvalues.

2: for Mobile devices ranging from n = Nodemin ... Nodemax do

3: Observe current Network utilization, Bandwidth, Tasksize

4: for each edge sever n = 1...q+1 do

5: find Minimum loaded edge server, Edgemin and create an authentication mechanism.

6: end for

7: Identify the key indicators to build current state St

8: Store all running states to fill state space S where St ∈ S

9: if offloading required then agent takes new route that has not been selected before to

obtain higher reward;

10: else agent takes the best route that has already observed so far.

11: After take action at, receive the reward R and update Q-values:

13: if destination is not available, then create acknowledgment and update the information.

14: end if

15: if destination is available then transfer the task to edge server and execute task.

Webology, Volume 18, Number 2, December, 2021

869 http://www.webology.org

Simulation Results

For this model to be implemented, the hardware specification such as Windows 10 OS,

NVIDIA GeForce GTX 1650 graphic processor, 9th generation i5 Core and 512 SSD. Also,

the programming language used for building this model is python under the Google collab

platform. The proposed model (IEEOA) is compared with other existing offloading

techniques such as (i) With out Offloading (ii) Energy Efficient Deep Learning-based

Offloading Technique (EEDOT), and (iii) Comprehensive and Energy effective

Deep-learning-based Offloading Technique (CEDOT).

The algorithm's inputs are as follows: the LSTM module's training data set comprises 1000

computational offloading logs for edge cloud nodes, while the test data set has 150

computation offloading logs. There are four hidden layers are available, with 500 iterations.

It has a batch size of 50 and a convergence loss of 0.025. To evaluate the complete process

delay task after the deployment of various algorithms, the data size V and the data size ϕ

for the subtasks of a computer task must be varied on a linear basis as experimental

variables. Two techniques are chosen for comparative studies in order to assess the

computation offloading methodology based on task prediction: (1) On mobile devices, the

computing work must be performed directly. There is no transmission delay in this mode,

and the task's overall duration is mostly due to computing delays. (2) Mobile devices must

offload all computing activities to linked edge computing nodes for execution. The overall

delay for the job in this manner comprises not only communication delays, but also

computation delay, queueing delay, and other factors.

Figure 5 depicts an examination of energy utilization of a UE with a fluctuating data size.

The energy utilization of IEEOA is the least since it considers the appropriate best routes

alongside the offloading strategy.

Figure 5 Energy consumption vs. No of nodes

Webology, Volume 18, Number 2, December, 2021

870 http://www.webology.org

Figure 6 depicts the progression of total task latency as data volume grows in three distinct

offloading techniques. It can be observed that, given the current state of our local hardware,

the computational capacity of mobile devices is insufficient to perform tasks involving huge

amounts of data. As a result, local computing is faster when the data amount is less. Local

computation time will rise in a nonlinear fashion as data size grows, which is inconvenient

for services that are sensitive to delay. Small data size works against the total delay

optimization because of the network transmission latency in edge computing offloading

mode. The benefit in the computational capability of edge computing nodes, on the other

hand, might be reflected as data size grows. Local computing, edge computing, and subtask

migration may all be integrated into our approach when considering the subtask forms of

computation tasks. In certain ways, an effective computation offloading technique can be

developed for jobs with various data sizes in order to reduce the overall task latency.

Figure 6 Latency of various methods vs. Data size

Figure 7 presents total cost depending on various data sizes. As our system uses an optimal

cost effective strategy which depending on time delay. However, the proposed technique

selects the offloading policy with minimum cost for offloading learning optimal routes.

Figure 7 Data size vs total cost

Webology, Volume 18, Number 2, December, 2021

871 http://www.webology.org

Figure 8 depicts a graphical representation of the delay of various offloading techniques

with respect to IEEOA on depending on efficiency as the number of nodes increases, our

model took comparatively less time to execute.

Figure 8 Delay vs. No of nodes

Conclusion

In response to the shortcomings of traditional local computing, cloud computing, and edge

computing modes, a novel intelligent computation offloading-based MEC architecture with

a combination of deep learning and reinforcement learning approaches is suggested in this

paper. The recommended architecture is used to build the compute offloading and task

migration technique based on task prediction together with routing methods. From the

perspective of the LSTM-based algorithm, the prediction-based computational offloading

strategy, and a computational job migration for the edge cloud scheme, the optimal

offloading technique for computation is explained. Unlike local computing and a single

edge offloading approach, our methodology successfully decreases overall task delay and

increases energy efficiency by selecting optimal offloading strategy and allowing high data

size offloaded jobs to be routed based on learning aspects which improves allocation of

tasks to the edge server in a quick manner. Performance tests are done using the algorithm

improves overall energy efficiency and reduces latency of tasks.

Webology, Volume 18, Number 2, December, 2021

872 http://www.webology.org

Table 3 Abbreviations
MEC Mobile Edge Computing

UE User Equipment’s

EU End Users

DL Deep Learning

AI Artificial Intelligence

RL Reinforcement Learning

LSTM Long Short Term Memory

RNN Recurrent Neural Network

MES Mobile Edge Server

EC Edge Computing

MCC Mobile Cloud Computing

DRL Deep Reinforcement Learning

DNN Deep Neural Network

QoS Quality of Service

TOT Total Offloading Technique

EEDOT Energy Efficient Deep Learning-based Offloading Technique

CEDOT Comprehensive and Energy effective Deep-learning-based Offloading Technique

References

Dinh, T.Q., Tang, J., La, Q.D., & Quek, T.Q. (2017). Offloading in mobile edge computing: Task

allocation and computational frequency scaling. IEEE Transactions on Communications,

65(8), 3571-3584.

Agarwal, S., Philipose, M., & Bahl, P. (2014). Vision: The case for cellular small cells for cloudlets.

In Proceedings of the fifth international workshop on Mobile cloud computing & services,

1-5.

Cao, Y., Jiang, T., & Wang, C. (2014). Optimal radio resource allocation for mobile task offloading

in cellular networks. IEEE Network, 28(5), 68-73.

Chen, X., Jiao, L., Li, W., & Fu, X. (2015). Efficient multi-user computation offloading for

mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795-2808.

Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computing—A key

technology towards 5G. ETSI white paper, 11(11), 1-16.

Chen, M., Hao, Y., Gharavi, H., & Leung, V.C. (2019). Cognitive information measurements: A new

perspective. Information sciences, 505, 487-497.

Chen, M., Hao, Y., Hu, L., Hossain, M.S., & Ghoneim, A. (2018). Edge-CoCaCo: Toward joint

optimization of computation, caching, and communication on edge cloud. IEEE Wireless

Communications, 25(3), 21-27.

Feng, J., Chen, X., Gao, R., Zeng, M., & Li, Y. (2018). Deeptp: An end-to-end neural network for

mobile cellular traffic prediction. IEEE Network, 32(6), 108-115.

Orsini, G., Bade, D., & Lamersdorf, W. (2016). Cloudaware: A context-adaptive middleware for

mobile edge and cloud computing applications. In 2016 IEEE 1st International Workshops on

Foundations and Applications of Self* Systems (FAS* W), 216-221.

Al-Khafajiy, M., Baker, T., Waraich, A., Al-Jumeily, D., & Hussain, A. (2018). IoT-fog optimal

workload via fog offloading. In IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), 359-364.

Li, J., Gao, H., Lv, T., & Lu, Y. (2018). Deep reinforcement learning based computation offloading

and resource allocation for MEC. In IEEE Wireless Communications and Networking

Conference (WCNC), 1-6.

Webology, Volume 18, Number 2, December, 2021

873 http://www.webology.org

Anas, A., Sharma, M., Abozariba, R., Asaduzzaman, M., Benkhelifa, E., & Patwary, M.N. (2017).

Autonomous Workload Balancing in Cloud Federation Environments with Different Access

Restrictions. In IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems

(MASS), 636-641.

Ma, X., Zhou, A., Zhang, S., & Wang, S. (2020). Cooperative service caching and workload

scheduling in mobile edge computing. In IEEE INFOCOM 2020-IEEE Conference on

Computer Communications, 2076-2085.

Sonmez, C., Ozgovde, A., & Ersoy, C. (2019). Fuzzy workload orchestration for edge computing.

IEEE Transactions on Network and Service Management, 16(2), 769-782.

Santoro, D., Zozin, D., Pizzolli, D., De Pellegrini, F., & Cretti, S. (2017). Foggy: A platform for

workload orchestration in a fog computing environment. In IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), 231-234.

Chen, M., Yang, J., Zhu, X., Wang, X., Liu, M., & Song, J. (2017). Smart home 2.0: Innovative smart

home system powered by botanical IoT and emotion detection. Mobile Networks and

Applications, 22(6), 1159-1169.

He, Y., Liang, C., Yu, F.R., & Han, Z. (2018). Trust-based social networks with computing, caching

and communications: A deep reinforcement learning approach. IEEE Transactions on

Network Science and Engineering, 7(1), 66-79.

Liu, J., & Zhang, Q. (2019). Code-partitioning offloading schemes in mobile edge computing for

augmented reality. IEEE Access, 7, 11222-11236.

Hu, R.Q. (2018). Mobility-aware edge caching and computing in vehicle networks: A deep

reinforcement learning. IEEE Transactions on Vehicular Technology, 67(11), 10190-10203.

Huang, L., Feng, X., Qian, L., & Wu, Y. (2018). Deep reinforcement learning-based task offloading

and resource allocation for mobile edge computing. In International Conference on Machine

Learning and Intelligent Communications, 33-42.

Zhang, F., Ge, J., Wong, C., Li, C., Chen, X., Zhang, S., & Chang, V. (2019). Online learning

offloading framework for heterogeneous mobile edge computing system. Journal of Parallel

and Distributed Computing, 128, 167-183.

Yu, S., Wang, X., & Langar, R. (2017). Computation offloading for mobile edge computing: A deep

learning approach. In IEEE 28th Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications (PIMRC), 1-6.

Dai, P., Liu, K., Wu, X., Xing, H., Yu, Z., & Lee, V.C. (2019). A learning algorithm for real-time

service in vehicular networks with mobile-edge computing. In ICC 2019-2019 IEEE

International Conference on Communications (ICC), 1-6.

Guevara, J.C., Torres, R.D.S., & da Fonseca, N.L. (2020). On the classification of fog computing

applications: A machine learning perspective. Journal of Network and Computer Applications,

159.

Ale, L., Zhang, N., Wu, H., Chen, D., & Han, T. (2019). Online proactive caching in mobile edge

computing using bidirectional deep recurrent neural network. IEEE Internet of Things Journal,

6(3), 5520-5530.

Al-Khafajiy, M., Baker, T., Waraich, A., Al-Jumeily, D., & Hussain, A. (2018). IoT-fog optimal

workload via fog offloading. In IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), 359-364.

Ning, Z., Dong, P., Wang, X., Guo, L., Rodrigues, J.J., Kong, X., & Kwok, R.Y. (2019). Deep

reinforcement learning for intelligent internet of vehicles: An energy-efficient computational

Webology, Volume 18, Number 2, December, 2021

874 http://www.webology.org

offloading scheme. IEEE Transactions on Cognitive Communications and Networking, 5(4),

1060-1072.

Li, J., Zhang, X., Zhang, J., Wu, J., Sun, Q., & Xie, Y. (2019). Deep reinforcement learning-based

mobility-aware robust proactive resource allocation in heterogeneous networks. IEEE

Transactions on Cognitive Communications and Networking, 6(1), 408-421.

Wang, S., Liu, H., Gomes, P. H., & Krishnamachari, B. (2018). Deep reinforcement learning for

dynamic multichannel access in wireless networks. IEEE Transactions on Cognitive

Communications and Networking, 4(2), 257-265.

Chen, J., Chen, S., Wang, Q., Cao, B., Feng, G., & Hu, J. (2019). IRAF: A deep reinforcement

learning approach for collaborative mobile edge computing IoT networks. IEEE Internet of

Things Journal, 6(4), 7011-7024.

Ali, Z., Jiao, L., Baker, T., Abbas, G., Abbas, Z. H., & Khaf, S. (2019). A deep learning approach for

energy efficient computational offloading in mobile edge computing. IEEE Access, 7,

149623-149633. http://doi.org/10.1109/ACCESS.2019.2947053

Fu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). WSNs-assisted opportunistic network for

low-latency message forwarding in sparse settings. Future generation computer systems, 91,

223-237.

Miao, Y., Wu, G., Li, M., Ghoneim, A., Al-Rakhami, M., & Hossain, M.S. (2020). Intelligent task

prediction and computation offloading based on mobile-edge cloud computing. Future

Generation Computer Systems, 102, 925-931.

Peng, K., Leung, V., Xu, X., Zheng, L., Wang, J., & Huang, Q. (2018). A survey on mobile edge

computing: Focusing on service adoption and provision. Wireless Communications and

Mobile Computing, 2018. https://doi.org/10.1155/2018/8267838

Meteab, A.A., Sadiq, A.S., & Hadrawi, H.K. (2020). Effect of Continuous Improvement of

Information Technology Applications on E-Costumer Behavior in Social Media.

Webology, 17(1), 19-29.

Authors Profile

S. Anoop is currently doing his research in Department of Computer Science and

Engineering at Noorul Islam Centre for Higher Education in the area of Mobile

cloud computing and network security.

Dr.J. Amar Pratap Singh is Professor in Department of Computer Science and

Engineering at Noorul Islam Centre for Higher Education. He received his Ph.D.

from Anna University in 2013. His main research interests include Cloud

computing, Data Mining, Mobile Computing, Wireless Networks, Image

Processing and Software Engineering.

https://doi.org/10.1155/2018/8267838
https://doi.org/10.1155/2018/8267838

