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Abstract 

 
The Internet of Things (IoT) relates to the process of utilizing computer networks to plan and 

model Internet-connected things. The Internet of Things (IoT)-based m-healthcare technologies 

have provided multi-dimensional functionality and real-time resources over the last few years. 

These apps provide millions of individuals with a forum to get wellness alerts for a healthy 

lifestyle constantly. Several aspects of these systems have been revitalized with the introduction 

of IoT devices in the healthcare sector. This work proposed a data-driven disease signal 

analytics by inventing a novel combination learning approach. The proposed Combination 

learning integrates different machine learning models to price disease signal for different 

options by leveraging the availability of a large amount of data through solving a sequential 

quadratic programming problem. The proposed approach demonstrates its superiority in 

prediction accuracy and strong model independence by overcoming traditional model-driven 
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approaches' generalization issue. The findings illustrate the efficacy of the task for an effective 

disease signal diagnosis. It could be a modern and useful health approach to adopt the proposed 

procedure with potential changes and incorporate it into a low-cost unit. 

 

Keywords 

 
Cloud Computing, Internet of Things, Healthcare, Diagnosis, Machine learning, Sequential 

Quadratic Programming Introduction. 

 

Introduction 

 

The Internet of Things (IoT) relates to the process of utilizing computer networks to plan 

and model Internet-connected things. IoT means that it is easier to have a wide range of less 

efficient devices, including wrist bands, air-conditioners, umbrellas, and refrigerators, 

instead of providing a limited number of powerful electronic devices such as computers, 

tablets, and mobile. Sensor-assisted computer processors intelligently program typical 

human-usable items such as air fresheners and cars and generate production in the actual 

environment, both of which are integrated into an ordinary object that can be used 

(Abdulzahra, 2019; Akhtar et al., 2015; Rasool et al., 2021; Ye et al., 2021; Zahra et al., 

2020). Therefore, wired devices or objects can process and interact beyond the 

specifications of basic devices, including an average lamp and umbrella, and may link 

buildings by network connectivity. Except for a name and personality, these improved IoT 

items have the technical thinking power to fulfill the assigned task. Since IoT is run through 

a broad spectrum of Internet networks, the word "Ubiquitous computing" varies from IoT 

(Anjos et al., 2013; G. Zhang et al., 2020). Inputs from a person or a living thing may be 

received from the "Thing" or object existing in the physical world and convert such data to 

the Internet for processing and data collection. For instance, the thread left behind, the 

number of stitches sewn, and roughly how many stitches can be registered by a sewing 

machine, which rendered possible throughout the specified time by utilizing sensors to save 

the output displayed by the object. In the sensors, "Actuators" may demonstrate the outputs 

to the human environment by linking the objects in the field. The gathered data triggers 

some of these outputs and is interacted with by the Internet. A sewing machine might signal 

that it runs out of threads, and substitution must be performed (Breiman, 2001; Xu et al., 

2016). 

 

The mixture of cloud and IoT-based web apps performs better in terms of performance 

relative to ordinary cloud-based apps. These variations may be used for new uses, including 

military, medical, and banking apps. The cloud-based IoT method can help supply medical 

applications with effective resources to track and view information from every remote 
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venue. The requisite details, such as regular adjustments in health criteria, are obtained by 

IoT-centric healthcare apps on time. Throughout a regular time, it updates the magnitude 

of the diagnostic parameters. Besides, IoT sensors and sensor-related diagnostic criteria can 

be used successfully to detect the illness at the proper period before the serious condition is 

reached. (Wen et al., 2015). 

 

In the decision-making method, machine learning algorithms play a significant role, even 

managing a very large amount of data. Implementing data collection approaches for 

particular fields requires identifying categories of data such as velocity, variety, and length. 

A neural network model, categorization model, and clustering system are used in the 

traditional data processing model, and efficient algorithms are implemented. Data with 

unique data kinds may be created from multiple sources, and methods need to be built to 

manage data features. The vast quantities of IoT resources produce the needed data in      

real-time without any issues, such as scalability, speed, and identifying the perfect data 

model. These are all known to be one of the IoT's big problems. These are all challenges, 

though, which provide a large number of possibilities for new technologies. A large amount 

of big data, which has various types of data, such as image, document, and categorical data 

using IoT devices as input data, has been obtained in this work. Such details would be safely 

processed in the cloud setting and accessible by the latest healthcare apps created. To 

continue with the learning method, a new machine-learning algorithm was used to map the 

data into two classes:' Usual' and 'Disease Affected' (Boulkenafet et al., 2015; Jain et al., 

2005; Jain A, n.d.). 

 

Since learning tasks involved in health diagnosis detection using Cloud and IoT can be 

more complex than other learning tasks (e.g., speech and voice processing), it is desirable 

to fully use several ML models to exploit the power of machine learning fully. Third, feature 

selection is ad-hoc. There is almost no rule to determine which feature should enter machine 

learning on behalf of health diagnosis. As a result, some important variables (e.g., ask-bid) 

may not participate in learning (Murdas & Zahra, 2016; Patel et al., 2016). 

 

It is vital to develop a fully data-driven approach that takes advantage of massive amounts 

of data and conquers the existing limitations. It should be more generalized rather than only 

work for a specific type of option. It should also exploit machine learning by using multiple 

models and integrating different prediction results, besides solving the ad-hoc feature 

selection problem (Liaw & Wiener, 2002; Pan et al., 2007; Ruiz-Blondet et al., 2016; Tsolas 

& Charles, 2015). However, it can be challenging to attain the goal. To our knowledge, 

there is no previous work on this topic. Besides data collection, ML model evaluations, and 

variable selection, several key questions have to be answered: what kinds of ML models 
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should be used in disease diagnosis? How to integrate different ML models to achieve 

optimized pricing? This study presents a fully data-driven approach by proposing novel 

integrative learning to answer the questions. The proposed method integrates different ML 

models to price disease signals by leveraging massive data collected. The theoretical 

foundation of integrative learning is built upon the framework of shallow, mid-level, and 

deep learning proposed in this work. Integrative learning builds an integrative learning 

system from top-performed ML models upon a large amount of option data. It presents 

mean-square error (MSE) and sequential quadratic programming weighting methods to 

integrate ML models. The sequential quadratic programming method models disease 

diagnosis as a nonlinearly constrained optimization problem and solves it via sequential 

quadratic programming (Gill & Wong, 2012; Koza & Koza, 1992). 

 

The proposed approach demonstrates superiority to traditional methods in generalization 

and robustness by providing decent subject prediction as the first full data-driven approach 

converts subject prediction into a model-free problem by avoiding high complexities in 

modeling. It can also lower overfitting risks for the multiple ML model usage. On the other 

hand, the proposed integrative learning can work as a general algorithm to integrate 

different machine learning models. It will inspire more following work in machine learning 

integrations in analytics. It was interchangeably using the following terms: pricing and 

prediction, learning machine, and ML models in our context for the convenience of 

descriptions. 

 

The remaining parts are arranged as follows: first, the approach suggested is presented; 

then, the tests are described; finally, the consequences and the potential study for 

reconsideration. 

 

The Framework of the Proposed Method 

 

In particular, in Figure 1, the suggested procedure is seen. The system proposed comprises 

three key stages: preprocessing of data, extraction of features, and creating classifiers. In 

the parts below, these measures are described. 
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Fig. 1 The architecture of Disease Diagnosis Computer Interface 

 

They are building an integrative learning system for full data-driven subject prediction. It 

involves three phases: preprocessing and data collection, variable selection, and integrative 

learning. The data collection and preprocessing stage collects a large scale of option data 

and cleans the data by removing missing ones or outliers. 

 

The variable selection stage answers the query: 'which variables of an option should enter 

machine learning?' The integrative learning stage integrates different ML models to get 

better predictions. It consists of four steps: preparation, probing learning, batch learning, 

and integration. Preparation normalizes and partitions data into training and test for 

learning. Probing learning evaluates a set of ML models by using partial training data and 

identifies top-performing models. Batch learning uses top-performing models to predict 

subject by using whole training data. Integration aims at integrating batch learning results 

to get better predictions. It was proposed sequential quadratic programming and meant 

square error (MSE) weighting for integration, in which the first one models subject 

prediction as a nonlinear optimization problem (Liaw & Wiener, 2002). 

 

Data Preprocessing 

 

Two procedures were conducted in the preprocessing period. At first, potential noise has 

been achieved through a clear method in the disease signal. An average filter is used in this 

process. Besides, because some of the disease signals are not on the same scale, there has 

been uniformity between the disease signals' sizes. The following method could be used to 

compute an average filter: 

 

Signal 
Filter =

1

𝑛
∑  𝑛

𝑗=1  signal 
𝑗
orig 

      (1) 
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Feature Extraction 

 

This phase focuses on statistical measurements and energy coefficients measured for each 

DWT biorthogonal 2.2 (bior 2.2) decomposition step. In both instances, each channel's 

characteristics have been calculated and concatenated, thereby achieving a single function 

vector per instance. 

 

1. Features Depending on DWT 

 

Disease signals are typically non-stationary since they shift rapidly over time, and disease 

trends provide knowledge regarding particular changes over time why this behavior must 

be taken into consideration by a representation. 

 

DWT with bior 2.2 as the mother function has been applied for each disease's signal channel 

as a first option. Applying this transform with a decomposition level 𝑗 provides a structure 

with guesstimate vectors 𝐶𝐴𝑗 and detail coefficients 𝐶𝐷𝑗: [𝐶𝐴𝑗,,𝐶𝐷𝑗−1, …,𝐶𝐷1]. It is also 

potential to identify the optimum decomposition levels’ number to be calculated utilizing 

DWT depending on the size of epochs that required for this dataset was four levels. Table 

1 demonstrates the frequencies for each decomposition’s level. 

 

The wavelet coefficients, nevertheless, can differ based on the channel for each 

decomposition level. The Instant Energy Delivery (IWE) and Teager (TWE) were 

determined to address this issue. It is necessary to provide the same number of 

characteristics per case after the energy coefficients have been calculated; below are the 

calculations for these energy distributions. 

 

Table 1 DWT with four decomposition levels, frequency ranges 

Level Frequency 

D1 32-64 

D2 16-32 

D3 8-16 

D4 4-8 

A4 0-4 

 

• The energy of Instantaneous: this coefficient of energy was a proportion of the disease 

signal amplitude. 

𝑓𝑗 = log10(
1

𝑁𝑗
∑  

𝑁𝑗

𝑟=1 ((𝑤𝑗(𝑟)))
2

)     (2) 

 

• The energy of Teager: It represents changes in both the magnitude and frequency of 

the signal of the disease and is a strong disease identification factor. 
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𝑓𝑗 = log10(
1

𝑁𝑗
∑  

𝑁𝑗−1

𝑟=1 ((𝑤𝑗(𝑟)))
2

− 𝑤𝑗(𝑟 − 1) ∗ 𝑤𝑗(𝑟 + 1))  (3) 

 

Instead of providing a vector of magnitude for each stage of decomposition, for each 

decomposition level, a single value for each is obtained, and the procedure is replicated to 

every channel. The coefficients of energy were then concatenated from each channel to 

provide a vector of characteristics to reflect the disease signal. 

 

2. Features Depending on the Statistical Magnitude 

 

Another approach to derive the function from the disease signal has been inspired by 

statistical characteristics. The signal was defined in such work by calculating a range of 15 

statistical magnitudes (9 magnitude and six variations thereof). In the nine works presented, 

only statistical magnitude (STV) has been regarded without any combinations between 

them, thereby achieving a set of 9 magnitudes per signal channel of the disease. The 

magnitude was concatenated after measuring statistical characteristics per channel to 

provide a single function vector per case. 

• STV: mean, maximum, minimum, standard deviation, variance, kurtosis, skewness, 

sum, median. 

 

Combination Learning 

 

Given input option data {𝑥𝑖, 𝑦𝑖}𝑖 𝑁=1 in which 𝑥𝑖 is a disease signal sample and its 𝑦𝑖 is 

its label, and a set of ML models ∅1, ∅2… ∅𝑇 integrative learning predicts disease signal 

sample by implementing four steps: preparation, probing learning, batch learning, and 

integration. The preparation normalizes input option data and further partitions the 

normalized data into training and test data, in which training data has known disease signal 

values. 

 

Probing learning tests the ’fitness’ between data and the ML models. It identifies                   

top-performing ML models using partial training data for training and another partial 

training data for the test. Batch learning employs the top-performing ML models to predict 

subjects by using whole training data. Integration assigns weights to the top-performing ML 

models’ predictions to achieve optimized subject prediction. 

 

1. Performance Measures 

 

We introduce the following performance measures: MSE, max, min, and mean error to 

evaluate machine learning performance in subject prediction. 
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Mean square error (MSE) answers the query: what is the average performance of this 

model? 

 

Given a test dataset {𝑥′𝑗, 𝑦′𝑗} 𝑁=1 in which 𝑦′𝑗 is the subject of option 𝑥′𝑗; and a given ML 

model 𝜃, the MSE is defined as, 

𝑚𝑠𝑒 =
1

𝑛
∑  𝑛

𝑗=1 |𝑦𝑗
′ − �̂�(𝑥𝑗

′)|
2
     (4) 

 

where �̂�(𝑥′𝑗) is the predicted subject: 𝑦′𝑗 = �̂�(𝑥′𝑗); in which �̂�(𝑥) is the implicit prediction 

function for the ML model 𝜃 obtained from learning. It is noted that mean error 𝑒𝑟𝑟𝑚𝑎𝑥 

=
1

𝑛
∑𝑛 𝑗=1 |𝑦′𝑗 − �̂�(𝑥′𝑗)| can also be used as a substitute for MSE in evaluation. 

 

Similarly, the maximum and minimum errors are defined as𝑒𝑟𝑟𝑚𝑎𝑥 = max{𝑦′𝑗 − �̂�(𝑥′𝑗)}𝑖 

𝑛=1, 𝑒𝑟𝑟𝑚𝑖𝑛 = min{𝑦′𝑗 − �̂�(𝑥′𝑗)}𝑖 𝑛=1, respectively. They answer the corresponding 

queries: what is the worst/best case for this model? 

 

Model performance evaluation. To evaluate two ML models' performance, It checked their 

average performance first. If they have the same level average performance, check their 

worst-case performance; if they have the same average and worst-case performance, check 

their best-case performance. Such a mini-decision tree guarantees a technical evaluation of 

any two learning models though MSE is usually sufficient. 

 

2. Probing Learning 

 

It is a ’fitness test’ between data and ML models to select the well-performing models. It 

uses one part of training data for training and the remaining for the test. Since disease 

signals are known for all training data, they can evaluate each ML model's performance. 

 

It first partitions training data {𝑥𝑖, 𝑦𝑖} 𝑁=1 into probing-training 𝑋𝑝 and probing-test data 

𝑋𝑝′ with a partition threshold η in (0:6; 1); where η means probing-training dataset 𝑋𝑝 has 

100× η% entries of the whole training data. It is recommended to use a high partition 

threshold (e.g., η = 0:8) so that the probing-training data can simulate the whole training 

data better in learning. Then probing learning trains input ML models ∅1, ∅2 … ∅𝑇 on 𝑋𝑝 

and calculates their MSEs on 𝑋 ′𝑝: Finally, it uses an MSE threshold 𝜏 to pick top-

performing ones with MSEs< 𝜏. 

 

3. Batch Learning 

 

Batch learning employs the top-performing models selected from probing learning to 

predict the subject using the whole training data. That is, each selected ML model ∅𝑗;              
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𝑗 = 1; 2 … 𝑙; is trained with the whole training dataset 𝑋 = {𝑥𝑖, 𝑦𝑖}𝑖 𝑁=1 Mathematically, 

it means there are subject prediction functions �̂�𝑗(𝑥) for an option sample 𝑥𝑘′ with the 

unknown subject, i.e., �̂�′𝑗𝑘=�̂�(𝑥′𝑘); 𝑗 = 1; 2 … 𝑙; 𝑘 = 1; 2 … 𝑡: Totally, batch learning will 

generate 𝑙 predicted volatilities: �̂�1(𝑥′𝑘), �̂�2(𝑥′𝑘), … �̂�𝑙(𝑥′𝑘). 

 

4. Combination 

 

Combination assigns the final subject for an option 𝑥𝑘′ in test data via the following 

weighting process. Given subject predictions �̂�1(𝑥′𝑗), �̂�2(𝑥′𝑗), … �̂�𝑙(𝑥′𝑗); assigning the final 

subject �̂�𝑐(𝑥′𝑗) is equivalent to finding the weights 𝑤1; 𝑤2 ...𝑤𝑙; such that 𝑤𝑗 ≥ 0; ∑𝑙 𝑗=1 

𝑤𝑖 = 1. 

 

�̂�𝑐(𝑥𝑗
′) = ∑  𝑙

𝑗=1 𝑤𝑗�̂�𝑗(𝑥𝑗
′)    (5) 

 

This study presents a mean square error (MSE) and sequential quadratic programming 

weightings. The former assigns weights according to the MSE of each ML model in probing 

learning. The latter assigns weights by solving a sequential quadratic programming 

problem. 

 

5. MSE Weighting 

 

The principle of MSE weighting is to assign more weights to those models with smaller 

MSEs. Using the MSEs from probing learning instead of batch learning is that MSEs cannot 

be calculated in batch learning because the test data is unknown. It has been present naive 

weighting approaches as follows. 

 

Naive weighting assigns more weights to the prediction of ML model ∅𝑗 directly, 

 

𝑤𝑗 = 1 −
𝑚𝑠𝑒𝑗

∑  𝑙
𝑗=1 𝑚𝑠𝑒𝑖

    (6) 

 

6. Sequential Quadratic Programming Weighting 

 

The MSE weighting is a static weighting scheme, which assigns the same weights to all 

options samples. Sequential quadratic programming weighting assigns different weights to 

options in a dynamic way. Its idea can be sketched as follows. Given an option 𝑥𝑗′ in test 

data and l ML model ∅𝑗; 𝑗 = 1; 2 … 𝑙; in batch learning, It has been firstly finding at least l 

nearest neighbors of 𝑥𝑗′ in the training data, say, 𝑥1; 𝑥2;…𝑥𝑚; 𝑚 ≥ 𝑙; each of which has its 

known subjects 𝑦1; 𝑦2;…𝑦𝑚: Then, solve the following problem to look for the weights 

{𝑤𝑖}𝑖 𝑙=1. 
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∑  𝑚
𝑖=1 ∑  𝑙

𝑗=1 𝑤𝑗�̂�𝑗(𝑥𝑗
′) = 𝑦𝑖, ∑  𝑙

𝑗=1 𝑤𝑗 = 1,𝑤𝑗 ≥ 0  (7) 

 

in which �̂�𝑗(𝑥𝑖) is the predicted subject of 𝑥𝑖 from the ML models ∅𝑗; 𝑗 = 1; 2 … 𝑙; 𝑖 =1; 2 

… 𝑚. 

 

Let (�̂�) = �̂�𝑗(𝑥′𝑖); then the following matrix A ∈ 𝔎 𝑚×1 stores all predictions of the 

neighbors𝑥1; 𝑥2;…𝑥𝑚. 

 

𝐴 = [

�̂�1(𝑥1) �̂�2(𝑥1) ⋯�̂�𝑙(𝑥1)

�̂�1(𝑥2) �̂�2(𝑥2) ⋯�̂�𝑙(𝑥2)
⋯ ⋯ ⋯⋯
�̂�1(𝑥𝑚)�̂�2(𝑥𝑚)⋯�̂�𝑙(𝑥𝑚)

]    (8) 

 

The need to solve the problem: 

 

𝐴 [

�̂�1(𝑥1) �̂�2(𝑥1) ⋯�̂�𝑙(𝑥1)

�̂�1(𝑥2) �̂�2(𝑥2) ⋯�̂�𝑙(𝑥2)
⋯ ⋯ ⋯⋯
�̂�1(𝑥𝑚)�̂�2(𝑥𝑚)⋯�̂�𝑙(𝑥𝑚)

](

𝑤1

𝑤2

⋮
𝑤𝑙

) = (

𝑦1

𝑦2

⋮
𝑦𝑚

)   (9) 

 

by satisfying the constraints: 𝑤𝑗 ≥ 0; ∑  1
𝑗=1 𝑤𝑖 = 1. 

 

Which is equivalent to solving the nonlinear optimization problem: 

 

𝑚𝑖𝑛|∑  𝑚
𝑖=1 ∑  𝑙

𝑗=1 𝑊𝐽 − 𝑦𝑗�̂�𝑖𝑗|
2
     (10) 

 

Let = [𝑤1; 𝑤2 … 𝑤𝑙]; and 𝑦 = [𝑦1; 𝑦2 … 𝑦𝑙]; It has been rewriting it as a standard sequential 

quadratic programming format: 

 
𝑚𝑖𝑛

𝑤
 𝑓(𝑤), 𝑠𝑡

ℎ(𝑤) = 0
𝑔(𝑤) ≥ 0

       (11) 

 

where𝑓(𝑤) =∥ 𝐴𝑤 − 𝑦 ∥2
2; ℎ(𝑤) = (𝑤 ⋅ 1⃗ ); 𝑔(𝑤) = 𝑤 is a vector in𝔎𝑙 in which all 

entries are 1. 

 

𝑚𝑖𝑛
𝑑

 ∇𝑓(𝑤𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝐵𝑘𝑑, 𝑠. 𝑡

ℎ(𝑤𝑘)∇ℎ(𝑤𝑘)𝑑 = 0

𝑔(𝑤𝑘)∇𝑔(𝑤𝑘)𝑑 ≥ 0

    (12) 
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where 𝐵𝑘 is the Hessian matrix of 𝑓(𝑤) at the kth iteration. SP solves a QP problem in each 

iteration to get the direction 𝑑; and calculates the next iteration point: 𝑤𝑘+1 = 𝑤𝑘 + 𝑑 until 

𝑑 approximates a zero vector. 

 

Results 

 

By testing with two sets of various functions, this segment intends to demonstrate the 

effects. The dataset utilized has been detailed, and by utilizing multiple functions, the 

findings are retrieved later. In comparison, the findings gained when a decreased range of 

channels are used as demonstrated. For assessing the proposed spatiotemporal disease 

signal's effectiveness, It has been performed a set of experiments on ECG/EEG signals 

obtained from the Physio net ECG/EEG database. It has been adopting two such databases 

and presents the characteristics of ECG/EEG signals obtained from the said database                   

(Z. Zhang et al., 2012). It should be noted that the k-fold method to divide the data into our 

training and testing phase. In this method, the best number of a fork is considered 10. 

 

Machine Learning Models in Subject Prediction 

 

It categorizes machine learning into shallow learning, mid-level learning, and deep learning 

in this study. 

 

Shallow, Mid-level, and Deep Learning 

 

Shallow learning does not have a serious learning topology, where each input data point is 

viewed as a learning unit. It has a simple learning mechanism. For example, k-NN is a 

typical shallow learning ML model with no rigorously mathematical model support for its 

instance learning mechanism. 

 

A complicated learning topology and mechanism characterize deep learning. A deep 

learning machine has its learning unit: a neuron that simulates a human brain neuron to 

handle information processing. Each neuron has its own activation functions (e.g., rectified 

linear unit function ('relu’)) in information processing. The neurons can demonstrate very 

different and complicate topologies in connections, which may change dynamically. MLP 

is a typical deep learning model with complicated learning topologies and serious learning 

mechanisms (e.g., stochastic gradient descent learning) (Gill & Wong, 2012; Kingma & Ba, 

2014). 

 

An ML model from mid-level learning has the same level of complicated learning 

mechanism as a deep-learning machine. However, they have a rigorous learning theory 
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(e.g., kernel-based learning) (Naganna et al., 2019; Oleiwi et al., 2018; Shawe-Taylor & 

Cristianini, 2000). Also, its learning topology may not be as complicated as that of a deep 

learning machine. For example, support vector machine, and (SVM), gradient boosting 

(GB), random forests (RF), or other ensemble learning methods all belong to mid-level 

learning (Breiman, 2001; Friedman, n.d.). 

 

Probing Learning Results 

 

It has been selected 9 ML models ranging from shallow learning to deep learning in probing 

learning. They include k-NN, decision trees (DT), Support vector machine (SVM) with 

linear and RBF kernels, Bayesian Ridge (Bayesian), Adaptive Boosting (AdaBoost), 

Bagging with decision tree as an estimator, and Multi-layer perceptron (MLP) (neural 

network) (Breiman, 1996; Louppe & Geurts, 2012). It is found that multi-hidden-layer MLP 

does not work well as a single hidden layer one. It is probably because the input data scale 

is not large enough to employ a deep neural network (DNN). On the other hand, a neural 

network with one hidden layer is enough to approximate the subject prediction function 

(Mokhtari & Ribeiro, 2013). It has been employed MLPs with different 200, 300, and 500 

hidden nodes, respectively. Each of them uses a 'relu' activation function under quasi-

Newton solver: 'LBFGS' with maximum iterations: 106 and 104 tolerance (Hornik, 1991). 

It has been employed as the quasi-Newton solver instead of other gradient learning (e.g., 

Adam) because of its second-order convergence speed.

 

 
Figure 2 The distributions of MSE of 12 ML models in probing learning, where SVR linear 

and SVR represent SVM regression with linear and ’rbf ' kernels, respectively 

 

Figure 2 shows MSE values for the different ML models in probing learning, indicating 

sequential quadratic programming, bagging, and MLPs are leading performers. The ML 
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model parameter settings follow defaults generally to avoid over tuning. The sequential 

quadratic programming model has a learning rate of 0:005; the boosting phases’ number to 

carry out is set as 1000, the optimum depth of each decision tree is set at 8, and the lowest 

required specimens’ number to be at a leaf node is 2. The bagging model has ten decision 

tree estimators and creates its training datasets via bootstrap. The MLPs lower their 

performance in probing learning with the increase of hidden neurons. It suggests that more 

hidden units may even lower neural network's predictability. As a shallow learning method, 

k-NN chooses Euclidean distance, picks three nearest neighbors, and uses inverse distance 

weights in regression. It outperforms some mid-level learning models such as linear-SVM, 

RBF - SVM, AdaBoost, decision trees (DT), and Bayesian ridge (Bayesian). 

 

Table 2 illustrates all models' performance in probing learning on behalf of MSE, max, min, 

and mean errors. It indicates that MSE or mean error can evaluate each model’s 

performance better than max or min error, although the max (min) error can indicate how 

bad (well) a model can diverge (converge) in subject prediction. The max errors stay at the 

same level for almost all models except for MLP (500), showing an obvious divergence, 

but the min errors demonstrate more ’ad-hoc’ values for different models. 

 

MSE threshold selection employed a genetic rule to select the MSE threshold 𝜏 in probing 

learning. It is set as the mean of all MSEs in probing learning adding the half of the standard 

deviation of MSE, i.e., 𝜏 = 𝐸(𝑀𝑆𝐸) +
std(𝑀𝑆𝐸)

2
: That is 𝜏 = 0:0179 under this situation, 

which means the ML models with MSEs larger than this cutoff will be dropped in batch 

learning. A total of 8 ML models entered batch learning, with the following four models 

dropped: decision trees (DT), AdaBoost, Bayesian ridge regression (Bayesian), and linear-

SVM. 

 

1. Batch Learning 
 

Batch learning uses the selected top-performing models to predict the test data subject using 

the whole training data. Thus, there are eight predicted subject: �̂�1(𝑥); �̂�2(𝑥) …�̂�8(𝑥1); for 

a given option x in the test data. It has not been known as the MSE of each model in batch 

learning because the test data subjects are supposed to be unknown. It has been only known 

they should work better than probing learning because more training data is used for the top 

players in probing learning. 

 

To answer the query, what happens in batch learning? Figure 3 compares the selected 

models' performance in batch and probe learning in terms of MSEs, max (min) errors, and 

mean errors. It indicates that almost all selected ML models in batch learning improve their 

predictions except the DT according to the measures. The model performance in batch 
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learning follows its ranking orders in probing learning globally. It validates the 'correctness' 

of probing learning estimation. Interestingly, the three neural network models demonstrate 

an 'inverse' performance in batch learning compared to probing learning, where the models 

with more hidden nodes demonstrate slight advantages in performance. 

 

Furthermore, bagging, sequential quadratic programming, and MLP-500 (a neural network 

with 500 hidden neurons) achieve much lower max error in batch learning. Such results 

suggest that more training data improves the average performance and contributes to their 

worst-case scenarios. Also, batch learning's minimum errors in batch learning show an 

equivalent or better performance in batch learning than probe learning. 

 

Table 2 ML model performance in probing learning 
Methods MSE Max Error mirror 

SQ Programming 0.0077 0.5893 0.0589 

Bagging 0.0083 0.6295 0.0000 

MPL200 0.0091 0.5753 0.0000 

MLP300 0.0093 0.5781 0.0000 

MLP500 0.0100 1.3170 0.0000 

KNN 0.0115 0.5882 0.0000 

DT 0.0192 0.6712 0.0000 

AdaBoost 0.0232 0.5711 0.0002 

Bayesian 0.0240 0.6620 0.0006 

 

 
Figure 3 The performance comparisons of the selected models in batch and probe learning 

in terms of MSEs, mean errors, and max (min) errors 
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2. Sequential Quadratic Programming: Final Subject Prediction 

 

In addition to MSE and sequential quadratic programming weighting methods, 'mean' and 

'median' weighting to calculate final subjects using the mean and median of the predicted 

subjects. Mathematically, they are equivalent to inferring the following prediction 

functions: 𝐺�̂�(𝑥) =
1

𝑙
∑  𝑙

𝑗=1 �̂�𝑗(𝑥), 𝐺�̂�(𝑥) = median{�̂�𝑗(𝑥)}
𝑗=1

𝑙
 correspondingly. The former 

assigns the same weights to all subject predictions, and the latter assigns weights such that 

the final subject to be the median of all predictions in batch learning. 

 

Table 3 The MSE comparisons of MSE weighting, sequential quadratic programming 

weighting, and the three top-performing models in batching learning. The sequential 

quadratic programming weighting in integrative learning achieves the best performance 

Methods No. channels MSE No. channels MSE 

SQ 2 0.012 10 0.0066 

  4 0.0099 12 0.0062 

Programming 6 0.0075 14 0.0059 

  8 0.0069 16 0.0055 

Bagging 2 0.12 10 0.013 

  4 0.0196 12 0.0099 

  6 0.0185 14 0.0085 

  8 0.016 16 0.0077 

MLP500 2 0.1602 10 0.0162 

  4 0.142 12 0.0123 

  6 0.1126 14 0.0096 

  8 0.1025 16 0.0081 

Naive 2 0.0126 10 0.0096 

  4 0.012 12 0.0075 

  6 0.0109 14 0.0065 

  8 0.01 16 0.0062 

 

Table 3 illustrates the three top-performed ML models' performance in batch learning, MSE 

weighting, and sequential quadratic programming weighting on behalf of MSEs. It shows 

that the proposed Combination learning achieves better performance than Bagging and 

MLP with 500 neurons in the hidden layer. The sequential quadratic programming 

weighting outperforms other integration methods by achieving approximately 25% 

improvements in the average performance of three single ML models. All integrative 

learning methods achieve better predictions than the single ML model predictions. 

 

Conclusion 

 

In this study, It has been proposed a fully data-driven approach using integrative learning 

to predict disease signals. The integrative learning approach takes advantage of the large 

amounts of option data and exploits multiple ML models' learning potential. It overcomes 



Webology, Volume 18, Number 2, December, 2021 

997                                                               http://www.webology.org 

 

the weakness of the traditional model-driven approach by enhancing the generalization of 

disease signal pricing. 
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