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Abstract 

 
The hyperledger fabric is a modular blockchain framework used by private companies to 

develop blockchain-based products, solutions, and applications using plug-and-play 

components. The smart contracts operating in this framework is created by implementing a 

chaincode. When implementing a chaincode, there may be a security weakness inside the code, 

which is the root cause of the security vulnerability. However, when the contract is completed 

and the block is created, the chaincode cannot be arbitrarily modified, so the security weakness 

must be analyzed before execution. 

This paper conducted a study on chaincode intermediate code generation for security weakness 

analysis of chaincode operating in hyperledger fabric blockchain framework. Analysis of 

security weaknesses at the source code level is not easy because the code logic is not clear and 

the complexity is high. On the other hand, security weakness analysis at the intermediate code 

level is easy to analyze because the code logic of the source code is clearly represented and the 

complexity is lower than that of the source code. 
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Introduction 

 

The hyperledger fabric is a modular blockchain framework used by private companies to 

develop blockchain-based products, solutions, and applications using plug-and-play 

components. The smart contracts operating in this framework is created by implementing a 

chaincode. When implementing the chaincode, there may be a security weakness inside the 

code, which is the root cause of the security vulnerability, but when the contract is 

completed and a block is created, the chaincode cannot be modified arbitrarily, so the 

security weakness must be analyzed before execution (Lin, Liao, 2017. Fagan, 1976, Son, 

et al., 2015). 
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This paper conducted a study on chaincode intermediate code generation for security 

weakness analysis of chaincode operating in hyperledger fabric blockchain framework. 

Security weakness analysis includes static analysis and dynamic analysis techniques. Static 

analysis is a technique that analyzes a program without running it, and dynamic analysis is 

a technique that analyzes the program as it actually runs. Analysis of security weaknesses 

at the source code level is not easy because the code logic is not clear and the complexity 

is high. On the other hand, intermediate code clearly expresses the code logic of the source 

code, and because its complexity is lower than that of the source code, it is easy to analyze 

all the execution paths of the program. Dynamic analysis is also easy because intermediate 

code can be executed on virtual machine execution systems targeting intermediate code 

(Lee et al., 2017, Son, Lee, 2012, Jeong et al., 2019, Cousot, Cousot, 2002). 

 
Related Studies 

 
Hyperledger Fabric Framework 

 

The hyperledger fabric (Cachin, 2016)  is a licensed blockchain network provided by IBM 

and Digital Asset, a platform for developing blockchain solutions and applications. It 

provides a modular architecture that represents the role between nodes in a blockchain 

network, the execution of smart contracts(fabric's chaincode), and the configurable 

consensus and membership services. The hyperledger fabric blockchain networks execute 

chaincode, access ledger data, approve transactions, and interface with applications. 

 
Since chaincode running on the hyperledger fabric network cannot be arbitrarily modified 

when the contract is completed, it can develop into a security vulnerability when the 

chaincode with security weakness is executed. Therefore, in order to solve this problem, it 

is necessary to diagnose security weakness items using static analysis methods that can be 

analyzed before software execution. 

 

Software Security Weakness Analysis 

 

A Software security weakness analysis is an analysis technique that diagnoses whether the 

security weakness, which is the root cause of security vulnerability, exists inside the 

software, and proactively detects and removes potential vulnerabilities such as software 

defects and errors to proactively eliminate the possibility of security threats such as hacking. 

Security weakness analysis method is divided into static analysis and dynamic analysis 
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(Kim et al., 2020,  Wichmann et al., 1995,  Cousot, Cousot, 2002, Abdellatif, Brousmiche, 

2018, Bhargavan et al., 2016). 

 
Static analysis is usually done by code review and is performed during the implementation 

phase of the security development life cycle. The ideal static analysis is to find software 

defects automatically. However, this increases time and resource costs. This helps security 

analysts find security weaknesses in their areas of interest, rather than automatically finding 

them. Unlike static analysis, dynamic analysis does not have access to the source code, and 

vulnerability scanning and penetration testing are used as dynamic analysis methods to find 

security weaknesses in running applications. 

 

Intermediate Code 

 

Intermediate code is an intermediate step code that is meaningfully equivalent to the source 

code independent of the target machine to help analyze the computer program. The 

intermediate code acts as an intermediate type of code that connects the front and rear ends 

of the compiler. Compilers have become functionally independent modules by using 

intermediate code, and their portability has increased (Lee et al., 2017, Son, Lee, 2012,  

Abdellatif, Brousmiche, 2018).  

 

In addition, the translation process can be more easily expressed and efficiently processed 

because it serves as an intermediate between advanced source code and lower-level 

objective code, enabling machine-independent and more efficient optimization by using 

intermediate code. Using the intermediate language, the programs can be executed 

independently using a virtual machine of the target machine 

 

Chaincode Intermediate Code Generator 

 
Analysis of security weaknesses at the source code level is not appropriate due to the lack 

of clarity and high complexity of the code logic. On the other hand, the intermediate code 

is semantically equivalent to the source code, the code logic is clear and concise, and the 

complexity is low. In addition, the presence of intermediate code, a common format, can 

increase scalability by reusing security weakness modules, even if the target language is 

different. 

 
This paper studies intermediate code generators that generate intermediate code 

meaningfully equivalent to chaincode for security weakness analysis inherent in chaincode. 

The intermediate code generator in this paper converts a chaincode into a pre-defined Smart 
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Intermediate Language (SIL) code to generate the Smart Assembly Format (SAF), which 

is an assembly file format (Lee et al., 2017, Son, Lee, 2012, Lee et al., 2020, Son, Lee, 

2014).  Figure 1 shows the structure of an intermediate code generator. 

 

 

Figure 1. Structure of an Intermediate Code Generator 

 

Information Table for Generating Intermediate Code 

 

Intermediate code generation requires a code generation information. This paper generates 

a string pool, literal table, and symbolic table, which are information tables for code 

generation. 

 

String Pool Generator 

 

The string pool generator generates a symbol identification table for access to the symbol 

table when generating the intermediate code. The string pool consists of a symbol name and 

a symbol identifier, and it accesses the symbol table when generating the intermediate code.  

 

String pool generation is created through an abstract syntax tree (AST) circulation. The goal 

is to create a table that identifies the name of the symbol, so when visiting the AssignStmt, 

ValueSpec, TypeSpec, and FuncDec nodes, where the symbol can exist among the AST 

nodes, symbol identifiers are generated.  

 

Literal Table Generator 

 

Literal table generators generate literal tables by collecting information to process string 

literals, escape sequences, and format specificators during intermediate code generation. 
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Literal table generation is generated while touring AST. Because the purpose of the string 

literal is to generate information, the generator generates literal information when it visits 

BasicLit among AST nodes. 

 

When visiting the BasicLit node, the generator analyzes whether the literal is a string literal. 

If it is a string literal, it analyzes the existence of the escape sequences and type specifiers 

in the string literal, and inserts the string literal into the literal table. Figure 2 shows the 

literal table generation process. 

 

 

Figure 2. Literal Table Generation Process 

 

Symbol Table Generator 

 

The symbol table generator generates a table that stores information about symbols needed 

to convert the Golang source code to intermediate code. Figure 3 shows the relationship 

between the symbol table and another tables. The symbol table generator, while traversing 
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AST, produces a total of five tables: symbol table, abstract table, member table, function 

table, and access to each table via the mind of the symbol table. A symbol table is a table 

that stores basic information about variables and function symbols with global/local scopes, 

such as type, symbol name, and offset. 

 

 

Figure 3. Relationship between the symbol table and another tables 

 

An abstract table is a table that stores symbolic information such as pointers, arrays, maps, 

etc., that cannot have substantial storage space. The abstract table manages the type of 

pointing target if the symbol is a pointer, or the type of information stored in the map or 

array. The member table stores member variables and symbol information of the member 

function of the structure and stores member kinds that access the symbol table to obtain 

information such as the member structure identifier, member identifier, and type and offset 

for the member. The function table stores function symbol information, the parameter 

identifier list of the function, the return type list, the named return type list, and the receiver 

identifier. 

 

Intermediate Code Generator 

 

The intermediate code generator traverses the abstract syntax tree and converts the source 

code into an intermediate code format or the smart intermediate language (SIL). The 

intermediate code generator in this paper consists of a node-type inference machine, code 

generation non-visor, and the smart assembly format (SAF) generator, which converts a 

source code into SIL using information from information tables such as symbol tables, 

string pools, and literal tables. Figure 4 shows a intermediate code generator structural 

diagram. 
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Figure 4. Intermediate Code Generator Model 

 

Semantics Analyzer 

 

The AST has only the meaningful information needed to generate intermediate code by 

removing unnecessary nodes from the past tree. However, code generation using AST alone 

cannot be checked for correct type schemes, which can result in semantic defects in 

generated code. 

 

The semantic analyzer uses the symbol table and Golang's type system to explore the AST 

and analyze the presence of a semantic defect. The process is as follows.  

1. If you visit the terminal node of the node during the AST traversal, specify the type of 

terminal node information of the symbol table. 2. Visiting a non-terminal  node during the 

AST tour analyzes the existence of semantic defects in the non-terminal  node according to 

the type of the lower node and type system, and specifies the node type to facilitate code 

generation.  

Figure 5 shows an example of semantic analysis. 

 

In Figure 5, the type information of a,b, the terminal node of AST, is accessed and imported 

from the symbolic table and the type of terminal node is specified. The ADD nodes, which 

are non-terminal nodes, verify that terminal nodes a and b are of the same type according 

to the Golang type system, determine that the two types are semantically non-defective, and 

combine type information in favor of code generation. Subsequently, the non-terminal node 

ASSIGN verifies that the terminal node c and the non-terminal ADD node are of the same 

type according to the type system and determines that there is no semantic defect if the type 

is the same. 
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Figure 5. Example of Semantic Analysis 

 

For non-terminal nodes related to function calls, the parameter type of the function is taken 

from the symbol table and assigned to the terminal node Println. The non-terminal node 

SELECTOR is assigned an interface, a type of function parameter.  Finally, the non-

terminal node CALLER checks whether the parameter type of the SELECTOR node 

includes the type of terminal node c. 

 

Code Generation Visitor 

 

Code generation non-visitors generate intermediate code while traveling through semantic 

trees generated by semantic analysts. The code generation process is done through pattern 

matching, and is largely divided into expression and statement processing.  
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Expression processing is largely divided into a symbol processing and a operator processing. 

The symbol processing uses information from the information table to generate 

intermediate code using the base, offset, address, and value information of stored symbols. 

Operator processing uses the type information given to the semantic tree to determine the 

type of operator, and generates intermediate code using a code matrix that maps this type 

information to intermediate code.  

 

Sentence processing produces sentences such as conditional statements, repetitive 

statements, and assigned statements in semantically equivalent intermediate codes. Each 

sentence generates an intermediate code to match the intermediate code pattern of the 

sentence. Figure 6 shows the intermediate code pattern of the repeat statement. 

 

 

Figure 6. Intermediate Code Pattern of the Repeat Statement 

 

In the intermediate code SIL, the iteration pattern begins with a start label to signal the 

beginning of the iteration. Then, an intermediate code region appears for the iteration 

condition and a branch code determining the iteration termination based on the iteration 

condition. The body code area of the repeat statement that runs when the repeat condition 

is satisfied appears, as well as the code area that updates the initial expression of the repeat 

condition appears. Finally, after the execution of the repeat body is completed, an 

unconditional branch code that branches to the starting point of the repeat statement, 

followed by and an end label that indicates the end of the repeat statement.  
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Figure 7 illustrates the code generation process of repetitive statements through pattern 

matching. Code generation visors are generated by matching repeat patterns when 

generating intermediate code for repeat statements. First, a repeat start label is generated, 

and if a condition node in the semantic tree exists, a code that corresponds to a condition 

statement or a condition code for an infinite loop will be generated. The loop termination 

branch code is then generated followed by the recurrent body code. Finally, if an initial 

value update node exists, it generates an increasing or decreasing expression; otherwise, it 

generates a code that branches unconditionally to the starting point of the iteration, and then 

generates a repeat end label. 

 

 

Figure 7. Code Generation Process of the Repeat Statement 

 

SAF Generator 

 

The Smart Assembly Format (SAF) generator generates assembly files using intermediate 

code tables and information tables generated by the code generation visor. Figure 8 shows 

a structure of the SAF generator. 

 



Webology, Volume 19, Number 1, January, 2022 

4755                                                      http://www.webology.org 

 

Figure 8. Structure of the SAF Generator 

 

The SAF generator consists of a header section generator, a code section generator, and a 

data section generator. The header section generator generates information such as the 

number of literals defined, the number of initialized variables, the number of uninitialized 

variables, and the name of the entry function, representing the key information that 

constitutes the SAF file. When creating a header section, the generator uses the information 

from the literal table and the symbol table to generate each information in a format.  

 

The code section generator generates SIL code information for the function, which is the 

information that represents the execution code of the program. When generating code 

sections, the SAF generator uses SIL code table information to generate them in a format. 

The data section generator generates global variables and literal information referenced in 

the code domain, the information that represents the data in the program. The generator 

takes global variable information from the symbolic table and generates it according to the 

format, and converts literals into hexadecimal numbers using literal table information to 

generate data section information. 

 

Experimental Results and Analysis 
 

To ensure that the intermediate code generator for the proposed chaincode security 

weakness analysis runs normally, the chaincode embedded in the security weakness is 

converted to intermediate code. The experiment was conducted using two examples: 

ReadYourWrite.go and UnhandledError.go. Figures 9 and 10 show the results of the 

intermediate code conversion of each example. 
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Figure 9. Intermediate Code Generation Results for ReadYourWrite.go 

 



Webology, Volume 19, Number 1, January, 2022 

4757                                                      http://www.webology.org 

 
Figure 10. Intermediate Code Generation Results for UnhandledError.go 

 

Next, the generated intermediate codes were run as a virtual machine, namely the Smart 

Virtual Machine (SVM) (Cousot, Cousot, 2002), to verify that the intermediate code 

generation of the chaincodes was not defective. Figures 11 and 12 show the results of 

running the generated intermediate code as a virtual machine SVM. 
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Figure 11. Execution Results of UnhandledError.go Program 

 

 

 
Figure 12. Execution Results of ReadYourWrite.go Program 

 

 

Conclusion and Future Research 
 

The smart context, which operates in the hyperledger fabric framework, is written by 

implementing an interface called a chaincode. When implementing a chaincode, there may 

be a security weakness inside the code, which is the root cause of the security vulnerability. 

However, when the contract is completed and the block is created, the chaincode cannot be 

arbitrarily modified, so the security weakness must be analyzed before execution.  

 

This paper conducted a study on chaincode intermediate code generators to analyze the 

security weaknesses of a chaincode operating in the hyperledger fabric framework. Security 

weakness analysis at the source code level is not easy to apply security weakness analysis 

techniques because the code logic is not clear and complex. The intermediate code 

generated by the intermediate code generator clearly represents the code logic of the source 

code, is less complex than the source code, so it is easy to analyze all the execution paths 

of the program. It is also suitable for dynamic analysis because it can be executed by 

intermediate code interpreters.  
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Currently, the intermediate code generated by the intermediate code generator has 

confirmed that the code runs in the virtual machine SVM without any problems.  In the 

future, we will study the security weakness dynamic analyzer of chaincodes using SVM, 

and the security weakness static analyzer that analyzes intermediate codes using static 

analysis techniques such as data flow analysis, symbolic execution, and control flow 

analysis. 
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