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Abstract 

 
Autism spectrum disorder is a developmental disorder that has affected many children around 

the globe in recent years. It is possible to reduce the severity of the symptoms when the 

affected children are identified and treated early. Hence, early detection and treatment of this 

neurodevelopmental disorder significantly help the patient’s (young ASD kids) well-being. In 

this regard, the research has been initiated by developing an algorithm based on a neural 

network that can efficiently differentiate the brain activity of a normal young subject and an 

autistic young subject. In this research, Electroencephalography (EEG) data were collected 

from normal kids and kids with ASD from age 4 to 6. Discrete Wavelet Transform (DWT) is 

used for feature extraction of EEG data for valence state analysis on younger kids.  It was 

inferred that there is a linear increase in Power Spectral Density (PSD) irrespective of age 

during valence state analysis of various EEG bands such as gamma, beta, alpha, and theta. 

When comparing the PSD of normal subjects with subjects of ASD, the PSD of ASD subjects 

is comparatively higher than the PSD of normal subjects. The trained network can classify the 

EEG data as normal subjects and subjects with ASD with good accuracy from the datasets. 
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Introduction 

 

Social disconnection and communication impairment with various severity are the main 

characteristics of Autism Spectrum Disorder (ASD) (Bosl et al., 2011). The children 

affected by ASD show noticeable challenges in developing social and cognitive functions. 

These children cannot focus on activities that may require shared attention.  Moreover, the 

co-occurrence of ailments such as depression, Tourette’s syndrome, learning       

disability, dyspraxia, epilepsy, Attention Deficit Hyperactivity Disorder (ADHD), 

Obsessive-Compulsive Disorder (OCD), and generalized anxiety disorder can occur along 

with ASD (Ahmadlou, Adeli and Adeli, 2010; Eldridge et al., 2014; Jeste, Frohlich and 

Loo, 2015). 

 

Recent research in the field of ASD has grown exponentially. Brain Computer Interface 

(BCI) system connected with Electroencephalography (EEG) were used to interpret the 

signals received from the brain to study the behavior of people and also to analyze causes 

of sleep disorder (Dhongade and Rao, 2017; Hernandez-Gonzalez et al., 2017). 

Experimental models were built to classify emotional activities like smiles, genuine 

smiles, fake/acted smiles, and neutral expressions. Several methods were proposed to 

understand intrinsic human behavior from three different emotional expressions like 

genuine, neutral, and fake/acted smile as well as analyze symptoms of epileptic seizure 

(Luo et al., 2020; Mardini et al., 2020). EEG features were extracted using three        

time-frequency analysis methods like Discrete Wavelet Transforms (DWT), Empirical 

Mode Decomposition (EMD), and incorporating DWT into EMD (DWT-EMD) at three 

frequency bands (Alex et al., 2020; Chowdhury, Poudel and Hu, 2020; Das et al., 2020). 

DWT blended with Artificial Neural Network (ANN) was adopted to improve the 

classification accuracy while studying the behavioral patterns of several test subjects 

(Deng et al., 2021; Fayaz et al., 2021; Uysal and Filik, 2021). 

 

Many promising rehabilitative approaches have been developed to improve the social 

understanding, communication, and repetitive routines and behaviors of the children 

affected by ASD. Societal attitudes and support extended by local and national authorities 

play a prominent role in improving the quality of life of autistic people (Subasi, 2007; Liu 

et al., 2012; Peker, Sen and Delen, 2016). Electroencephalography is a non-invasive 

technology that records the spontaneous electrical activity of the brain. It significantly 

helps to analyze the electrophysiological measures between different parts of the brain. It 

is possible to pick up EEG signals from the electrodes placed on the scalp by adopting 

various available montages and electrode setups. In this study, a neurosky mind waves 

mobile reader EEG with a single electrode is placed on the forehead of the test subjects 
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(Du and Swamy, 2006; Yusaf, Nawaz and Iqbal, 2016; Lu et al., 2017; Bosl, Tager-

Flusberg and Nelson, 2018). Different functional connectivity parameters are determined 

from EEG signals that show the cognitive network behavior of individuals showing 

symptoms of ASD during specific tasks.  

 

Methodology 

 

The data collection from subjects aged between four and six was carried out successfully 

in the special schools and hospitals in and around Bangalore. While conducting these 

studies, the subjects were engaged in various activities like listening to their favorite 

rhymes, playing with toys, and singing songs.  Feedback was taken from their respective 

therapists. Their EEG signals were extracted using the electrodes placed on their forehead. 

The signals were extracted from the kids in the presence of their behavioral therapist. 

Figure 1 represents the proposed block diagram where EEG signals are extracted from the 

subject (normal and confirmed abnormal subjects). Preprocessing (PP) is done for 

removing artifacts, various filters like bior 2.2, bior 4.4, DB2, DB4, haar filters were used. 

Out of them, DB2 yielded the best results. DWT method was employed for feature 

extraction. Features extracted were classified using Feed forward back propagation neural 

network classifier. This classified normal subjects and abnormal subjects. 

 

Figure 2 represents DWT-based three-level sub-band decomposition block diagrams. In 

existed method DWT feature extraction method yields five distinctive energy bands. 

During valance state analysis, the existing method could not significantly differentiate 

between normal subjects and abnormal subjects. In DWT based three-level sub-band 

decomposition method, the first level decomposition method yielded eight energy bands. 

The second-level decomposition method yielded ten energy bands. The third level 

decomposition method yielded twenty energy bands. During the third level 

decomposition, there was a significant difference in PSD level of normal subjects and 

abnormal subjects. 

 

 
Figure 1 Block diagram of DWT based ASD detection and classification 
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Figure 2 Three-level sub-band decomposition method block diagram 

 

Result and Discussion 

 

During the feature extraction and valance state analysis, power spectral density is one of 

the salient features to identify the differences in the brain electrophysiological processing. 

Table 1 shows the comparison of the energy levels of subjects with ASD (A1, A2, A3) 

and normal subjects (N9, N4, N5) between the age group of four and six years and D1to 

D8 represents the energy bands obtained during the first level decomposition. 

 

Level- 1 

 

During valance state analysis, a linear increase in Power Spectral Densities (PSD) of EEG 

bands gamma, beta, alpha, and theta is observed during the first level decomposition. In 

the case of the theta band to the delta band, there is a significant rise in PSD values from 

the first energy band to the eighth band at level 1. Table 1 presents the energy levels of 

subjects with ASD and normal subjects of 4 to 6 years. 

 

During valance state analysis, when comparing the PSD of normal subjects with subjects 

of ASD, the PSD of ASD subjects is comparatively higher than the PSD of normal 

subjects. However, as seen in the table above normal subjects at the eighth energy band, 

PSD is significantly lower than PSD of ASD subjects. Figure 3 shows the graph plotted 

with PSD in the y-axis and energy bands in the x-axis for subjects in the age group of 4-6 

years (Level 1). 
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Table 1 Energy levels of subjects with ASD vs normal subjects 

 D1 D2 D3 D4 D5 D6 D7 D8 

N9 -3.52594 2.348022 7.883919 12.46726 16.62408 19.61439 24.97971 46.99022 

N4 -1.34527 5.655867 10.37533 15.25241 17.14037 21.47814 25.23978 49.56009 

N5 -3.08743 1.409837 6.736787 11.21493 15.79248 19.09183 25.29444 48.04176 

A1 6.932983 12.9604 18.47084 23.05811 27.06864 31.82856 32.076 67.76394 

A2 9.497077 15.23507 20.12333 24.51286 28.40417 30.57102 31.96233 61.86347 

A3 6.268371 12.5249 18.00833 21.61636 27.80194 30.36592 11.23784 62.52733 

 

Figure 3 Graph of PSD  Vs Energy Band (Level-1) 

 

Level -3 

 

During valance state analysis, in Power Spectral Densities (PSD) of EEG bands gamma, 

beta, alpha, theta, there is a linear increase, and from theta band to delta band, there is a 

significant. 

 

Table 2 Energy levels of subjects with ASD vs normal subjects (4 to 6 years) 

 

D
1

 

D
2

 

D
3

 

D
4

 

D
5

 

D
6

 

D
7

 

D
8

 

D
9

 

D
1

0
 

D
1

1
 

D
1

2
 

D
1

3
 

D
1

4
 

D
1

5
 

D
1

6
 

D
1

7
 

D
1

8
 

D
1

9
 

D
2

0
 

N
9

 

1
4

.4
 

1
4

.1
 

1
3

.2
 

1
0

.4
 

1
8

.2
 

1
8

.5
 

1
6

.4
 

1
5

.2
 

2
0

.7
 

2
3

.5
 

2
1

.8
 

2
0

.9
 

3
0

.6
 

2
6

.8
 

2
8

.7
 

2
8

.7
 

2
9

.6
 

2
4

.8
 

2
8

.1
 

2
8

.4
 

N
4

 

1
7

.8
 

1
5

.7
 

1
3

.9
 

1
4

.1
 

1
8

.4
 

2
0

.2
 

1
7

.3
 

1
5

.6
 

2
5

.6
 

2
7

.8
 

1
8

.5
 

2
2

.2
 

3
1

.1
 

2
8

.6
 

3
0

.0
 

2
7

.1
 

3
0

.0
 

3
0

.4
 

2
7

.8
 

2
6

.5
 

N
5

 

1
1

.6
 

1
2

.7
 

1
1

.1
 

1
0

.2
 

1
8

.1
 

1
6

.4
 

1
7

.4
 

1
4

.8
 

2
2

.4
 

2
3

.6
 

1
9

.8
 

1
8

.2
 

2
5

.3
 

3
1

.6
 

2
2

.9
 

3
0

.8
 

3
1

.0
 

3
0

.3
 

2
4

.7
 

2
6

.2
 

A
1

 

2
4

.4
 

2
4

.7
 

2
3

.7
 

2
1

.1
 

3
0

.1
 

3
1

.0
 

2
6

.2
 

2
6

.1
 

3
6

.1
 

3
6

.3
 

3
3

.3
 

3
3

.0
 

3
8

.7
 

4
1

.5
 

4
1

.4
 

3
6

.4
 

4
2

.9
 

4
0

.7
 

4
0

.0
 

3
7

.2
 

A
2

 

2
5

.4
 

2
7

.0
 

2
5

.6
 

2
3

.2
 

3
0

.0
 

3
0

.3
 

3
0

.0
 

2
9

.1
 

3
3

.0
 

3
2

.7
 

3
2

.9
 

3
4

.6
 

4
1

.1
 

3
5

.1
 

3
6

.6
 

3
7

.2
 

3
7

.5
 

3
6

.5
 

3
6

.3
 

3
3

.0
 

A
3

 

2
3

.7
 

2
3

.4
 

2
2

.2
 

2
0

.5
 

2
8

.9
 

3
0

.6
 

2
8

.0
 

2
8

.8
 

3
2

.4
 

3
3

.3
 

3
3

.9
 

3
2

.2
 

3
9

.9
 

3
8

.6
 

3
6

.4
 

3
7

.2
 

3
9

.5
 

3
8

.4
 

3
7

.4
 

3
7

.0
 



Webology, Volume 19, Number 1, January, 2022 

4872                                                      http://www.webology.org 

Figure 4 Graph of PSD  Vs Energy Band (Level-3) 

 

Jump in PSD from the first energy band to the 20th band at level 3. When comparing the 

PSD of normal subjects with subjects of ASD, the PSD of ASD subjects is comparatively 

higher than the PSD of normal subjects. At the 20th energy band, it is seen that normal 

subject PSD is significantly lower than PSD of ASD subjects as shown in Figure 4. Table 

2 presents the energy level of subjects with ASD and normal subjects of four to six years 

at level 3. D1to D20 represents the 20 energy bands obtained during third-level 

decomposition. 

 

Neural Network 

 

Classification of normal and autistic subjects is carried out using Feed Forward Back 

Propagation Neural Network (FFBPNN). The NN model employs ‘TANSIG PURELIN’ 

as a network activation function. Three normal subjects of age four to six years and three 

abnormal subjects of age four to six are considered for training. In the NN training stage, 

input data and sampling data are fed to the NN classifier, where targets are set as 0.2 for 

normal and 0.8 for autistic subjects. The input values are shown in Table 3. 

 

Table 3 Input Values 

Epoch 27 iterations 

Performance 0.000393 to 0=3.45e-13 

Gradient 0.000546 to 1.00e-07=1.48e-08 

Mu 0.00100 to 1.00e+10=1.00e-1 

Validation checks 0 to 6= 0 
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Figure 5 The best validation performance plot 

 

Figure 5 reveals the best validation performance. The best mean squared error expected is 

around 10-5. The best validation performance was achieved at the 27th epoch.  Test input 

performance at the 27th epoch is around 10-12. Training performance was around 10-12. 

This shows the system state after training based on plot regression, which shows the plot 

between training samples, output data, validation samples, and test samples. 

 

The trained network is evaluated for its performance, considering gradient, Mu, and MSE. 

Figure 6 shows that the minimum gradient was achieved at the 27th epoch. At zeroth 

epoch, the sensitive factor is decreasing till the 3rd epoch. From the 27th epoch, it is 

observed that there is a steep fall in the sensitive factor. Error histogram reveals that at 

zero error, 35 instances of training, 10 instances of validation, and 10 instances of the test 

are observed, which is shown in Figure 7. 

 

Figure 6 Minimum gradient achieved at 27th epoch 
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Figure 7 Error Histogram 

 

The regression plot obtained from the confusion matrix provides the optimal solution for 

better classification accuracy. The confusion matrix as shown in Figure 8 shows that the 

neural network is trained to achieve the best regression, as the matrix indicates that the 

neural network is trained. The above neural network results indicate that the desired 

regression of one is achieved. Trained output matches the set targets of 0.2 and 0.8. The 

trained network could successfully classify the EEG data as normal subjects and subjects 

with ASD with good accuracy for the given datasets. It is vital to evaluate the 

performance of the network considering large EEG datasets for practical implementation. 

 

Figure 8 Confusion Matrix 
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Conclusion 

 

This paper throws light on the suitability of an EEG biomarker to distinguish autistic 

individuals from neurotypical. The EEG signal data were extracted using a single 

electrode placed on the forehead of the subjects while performing various activities 

depending on the interest of the subjects. Validation of sensors has been carried out with 

EEG data analysis of different emotions. Feature extraction employed Discrete Wavelet 

Transform. During valance state analysis, our results reveal a linear increase in Power 

Spectral Density of EEG bands gamma, beta, alpha, and theta among subjects in the age 

group of four to six years.  

 

A significant rise in PSD has been observed during valance state analysis from theta to 

delta band. Our studies reveal that the PSD of normal subjects is significantly lower than 

the PSD of ASD subjects. The trained network can classify the EEG data as normal 

subjects and subjects with ASD with good accuracy for the given datasets. Further 

evaluation of the neural network's performance with large EEG datasets is required. Thus, 

in the future, this type of neural network can be developed into a practically feasible tool 

for personalized treatments and performance evaluation of the therapies on the autistic 

brain.  
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