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Abstract 

 
Time series are typically built on basic assumptions that include stationarity, linearity and 

normality. The three characteristics are crucial for estimating and building time series models. 

Studies on time series include these assumptions. To deal with unstable time series that are 

based on its basis, mathematical models that are suitable for such series are adopted in this 

study. A nonlinear self-regression model, called the rational model, is proposed. This model is 

a fraction in which the numerator is the complete sine function and the denominator is an 

exponential self-regression model. The fixed point and limit cycle of the model are simulated 

and determined, and its stability is studied using a linear approximation technique. 

 

Keywords 
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Introduction 

 

A time series is one of the most important and useful mathematical methods for research 

and scientific studies. It is considered the pillar of development plans and the primary 

response to some problems and changes in the medical, economic and service aspects. The 

study of time series includes basic assumptions, such as being linear, gradual and natural. 

It also involves determining how unstable time series should be treated to build appropriate 

mathematical models. For example, whether linear or nonlinear models should be adopted, 

such that the parameter of the model is a rational function simplified by the cosine function 

and the denominator is an exponential autoregression. 

 

This model exhibits a nonlinear behaviour in the form of limit cycles, and the linear 

approximation method proposed by Ozaki (1985) was used to determine the stability of this 

model and other statistical properties. 
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Basic Concepts 

 

1. Autoregressive Model 

 

The discrete-type autoregressive time series model is one of the most widely used models 

in different applications. The general form of the p-rank autoregressive model, which is 

symbolised by AR(P), is 

 

𝑋𝑡 = 𝑀 + 𝑎1 𝑋𝑡−1 + 𝑎2𝑋𝑡−2 + ⋯ + 𝑎𝑃𝑋𝑡−𝑃 + 𝑍𝑡, (1-1) 

 

where 𝑎1, 𝑎2, … , 𝑎𝑃 , 𝑀 are constants; and {𝑍𝑡} is a purely random, noncorrelated process 

called white disturbance. It exhibits the following characteristics:  

 

𝑐𝑜𝑣(𝑍𝑡, 𝑍𝑡+𝑘) = 𝑜, ∀𝑘 ≠ 𝑜; 

𝑉𝑎𝑟(𝑍𝑡) = 𝜎𝑧
2; 

𝐸(𝑍𝑡) = 𝑜. 

 

The model, Equation (1-1), can be written in the following form: 

 

∝ (𝐵)𝑋𝑡 = 𝑀 + 𝑍𝑡     (1-2) 

 

Given that ∝ (𝐵) = 1 − 𝑎1𝐵 − 𝑎2𝐵2 − ⋯ − 𝑎𝑃𝐵𝑃, 𝑎𝑛𝑑 𝐵 represents the background 

displacement effect, which is known as 𝐵𝑛𝑋𝑡 = 𝑋𝑡−𝑛, all 𝑛 = 0,1,2,3, …,  and it typically 

adopts the autoregressive model as follows:  

 

𝑋𝑡 = 𝑎1 𝑋𝑡−1 + 𝑎2𝑋𝑡−2 + ⋯ + 𝑎𝑃𝑋𝑡−𝑃 + 𝑍𝑡.  (1-3) 

 

The general solution for Equation (1-3) is 

 

𝑋𝑡 = 𝑓(𝑡) +∝−1 (𝐵)𝑍𝑡.                                               (1-4) 

 

𝑓(𝑡) is the complement function that represents the solution for the homogeneous 

differential equation ∝ (𝐵)𝑋𝑡 = 𝑜, which exhibits the following form: 

 

𝑓(𝑡) = 𝐴1𝜆1
𝑡 + 𝐴2𝜆2

𝑡 + ⋯ 𝐴𝑃𝜆𝑃
𝑡    (1-5) 

 

where 𝐴1, 𝐴2, … , 𝐴𝑃 are optional constants; and 𝜆1, 𝜆2, … 𝜆𝑃 are the roots of the 

characteristics equation. 

 

𝜆𝑃 − ∑  𝑃−1
𝑗=1 𝑎𝑖𝜆

𝑃−1 = 𝑜    (1-6) 

 

Wan ∝−1 (𝐵)𝑍𝑡 represents the model’s own solution. 
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The autoregressive model, AR(P), is apparently stable if and only if |𝜆𝑖| < 1 for each 𝑖 =

1,2,3, … , 𝑃 [7]. 

 

2. Relative Autoregressive Model  

 

Let {𝑋𝑡} be a time series, where 𝑡 = 𝑜, ∓1, ∓2, …. The relative model of the autoregressive 

rank P is defined as the model that fulfils the following relationship: 

 

𝑋𝑡 =
𝑃1

𝑃2
𝑋𝑡−𝑖 + 𝑍𝑡;   𝑖 = 1,2, … , 𝑃. 

 

Given that 𝑃1 and 𝑃2 are polynomials or linear or nonlinear functions, 

we assume that 

 

𝑃1(𝑋) = ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) , 

𝑃2(𝑋) = ∑  

𝑃

𝑖=1

(𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑒𝑖−1
2

). 

 

If 𝑃1(. ) represents the cosine function; ∅, 𝑤, ∝ are constants; 𝑃2(  ) represents an Asian 

model and 𝜋, 𝑌 are constants, then {𝑍𝑡} is the model series as follows: 

 

𝑋𝑡 = ∑  𝑃
𝑖=1  

∝𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅)

𝜋𝑖+𝜃𝑖𝑒−𝑌𝑒𝑖−1
2 𝑋𝑖−1 + 𝑍𝑡   (1-7) 

 

3. Fixed point [5][6] 

 

Consider the following model:  

 

𝑋𝑡 = 𝑓(𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑃).    (1-8) 

 

The single point ∈ in the model, i.e. Equation (1-8), is defined as the point that the model’s 

path is approaching. If the path approaches ∈ when 𝑡 → ∞, then it is a stable point. 

 

However, if the path approaches ∈ when 𝑡 → −∞, then ∈ is a single unstable point. The 

necessary and sufficient condition for ∈ is that the following relationship must be fulfilled: 

 

∈= 𝑓(∈, ∈, ∈, … , ∈). 

 

 

 

 



Webology, Volume 19, Number 1, January, 2022 

2838                                                  http://www.webology.org 

4. Limit Cycle 

 

Consider the following model 𝑋𝑡 = 𝑓(𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑃), which defines the terminal 

period of the above model as the isolated and closed path 𝑋𝑡 = 𝑋𝑡, 𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑞 

because q represents a positive integer. 

 

An isolated path is defined as any path that starts extremely close to a limit cycle and 

approaches it when 𝑡 → ∞ or 𝑡 → −∞.  

 

If the path approaches it when 𝑡 → ∞, then it is called a stable limit cycle. If the path 

approaches it when 𝑡 → ∞, then it is called an unstable limit cycle. 

 

For the closed path, if the initial values 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑃 belong to a limit cycle, then 

(𝑋1, 𝑋2, … , 𝑋𝑃) = (𝑋1+𝑘𝑞 , … , 𝑋𝑃+𝑘𝑞) for every positive integer k, where P is the period for 

the limit cycle [6]. 

 

5. Linear Approximation Method [5] 

 

The local linear approximation method was proposed by Ozak (1985) for finding the 

stability of nonlinear models. This method is summarized as follows. 

 

• First stage: Finding the single nonzero point of the nonlinear model. 

• Second stage: Testing the stability of this point by using a linear approximation 

technique. 

 

Stability of the Relative Autoregressive Model 

 

3.1 Stability [2] 

 

In many applications in engineering physics, we encounter operations that can be described 

as statistical equilibrium. That is, if we make observations of this type of process and divide 

them into groups of periods, then the different sections of these observations will appear 

similar. More accurately, the statistical qualities remain constant and do not change with 

time. 

 

Stochastic processes that behave in this manner are called stationary processes. That is, no 

growth or decay of the time series data occurs; data are scattered around a constant medium 

and have a constant variance. Therefore, 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑡 must have the same probability 

density function, i.e. 
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𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑡) = 𝑓(𝑋1+𝑘, 𝑋2+𝑘, … 𝑋𝑡+𝑘). 

 

k represents a real number, 

and the joint probability distribution does not change with a change in time or when shifting 

with fixed numbers. 

 

2. Stability of Linear Autoregressive Models 

 

The complement function 𝑓(𝑡) in Equation (1-5), which represents the solution of the 

homogeneous differential equation ∝ (𝐵)𝑋𝑡 = 𝑜, approaches zero when 𝑡 → ∞ if and only 

if the absolute value of all the roots of the characteristic equation are less than one. The 

characteristic is located inside the unit circle, which is a circle with the centre as the origin 

and a radius of 1. 

 

3. Stability of Nonlinear Models 

 

The techniques developed to study the stability of linear time series models are highly 

dependent on the default being linear, and thus, they cannot be easily expanded to the 

nonlinear state. We study special cases of nonlinear models. Many studies on the stability 

of nonlinear models have been conducted. They include finding stability in accordance with 

Lyapunov’s direct theory, which depends on the stability of the initial model and on more 

than one variable.   

 

The stability of the Lagrange method, which is typically limited to one or several chains 

and must have a definite string, i.e. 𝑚 ≥ |𝑋𝑖|, because M is a constant, it is used to find the 

stability of continuous time series or intermittent time. We adopt the linear approximation 

method proposed by Ozaki (1985) to study the stability of nonlinear models, focusing on 

one of the relative autoregressive models. 

 

4. Stability of the Autoregressive Model 

 

Finding the stability of relativistic models is a difficult task, and thus, we adopt special 

cases and simplified formulas. 

 

Stability can be found using the formula for stability of linear models. For example, the 

stability of can be tested the following proportional model and its treatment as linear 

models:  

 

𝑌(𝑡) =
0.99+𝑒2(𝑡−1)

1+0.1𝑦2(𝑡−1)+𝑒2(𝑡−1)
𝑦(𝑡 − 1) + 𝑧(𝑡).   (2-1) 
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This model can be expressed as follows:  

 

𝑌(𝑡) = 𝜑𝑦(𝑡 − 1) + 𝑧(𝑡). 

 

Given that  

𝜑 =
0.99 + 𝑒2(𝑡 − 1)

1 + 0.1 𝑦2(𝑡 − 1) + 𝑒2(𝑡 − 1),
 

 

the characteristic equation for this model is 𝑉 − 𝜑 = 𝑜. 

 

Thus, the condition of stability |𝑀| < 1 because M is the root of the characteristic equation, 

given that 

 

𝑜 <
0.99 + 𝑒2(𝑡 − 1)

1 + 0.1 𝑦2(𝑡 − 1) + 𝑒2(𝑡 − 1)
< 1. 

 

The model is stable within the period of −1 < 𝑚 < 1. A number of researchers have 

studied the stability of these linear and nonlinear models in special cases. He (?) 

investigated exponential autoregressive models by using the linear approximation method 

of Ozaki (1985). Ozaki researched nonlinear random oscillations in kinetic systems and 

modelled them by using the exponential autoregressive model (xxxx). 

 

In the succeeding sections, we study the stability of the relative autoregressive model in a 

special case wherein 𝑃1( . ) trigonometric functions, 𝑃2( . ). An Asian model, which is the 

proposed model. Studying the stability of this model involves finding a single point. We 

test the stability of this model by using the linear approximation method or the limit cycle. 

 

Let’s begin with the cases for Model (1-7) and generalise the idea to include a model with 

rank P.  

 

5. Finding the Single Point of the Proposed Model 

 

Model (1-7): 

𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + ∅𝑖𝑒
−𝑌𝑋𝑡−1

2 𝑋𝑡−𝑖 + 𝑍𝑡. 

 

 ∝, ∅, 𝑤, 𝜋, ∅  𝑎𝑛𝑑 𝑦 are predefined; and {𝑍𝑡} noises when 𝑃 = 1, we obtain 

 

𝑋𝑡 =
∝𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅)

𝜋𝑖+∅1𝑒−𝑌𝑋𝑡−1
2 𝑋𝑡−𝑖 + 𝑍𝑡, (2-2) 
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which is a first-order relative model. We assume that the effect of {𝑍𝑡} is equal to zero, and 

then we use the single point definition that we obtain. 

 

∈=
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅) 

𝜋𝑖+∅1𝑒−𝑌𝑋2 ∈  (2-3) 

 

∈= 𝑜 represents the zero fixed point, which is one of solutions called the trivial solution, 

and the rest. 

 

The fixed (nonzero) points can be determined by solving Equation (2-3) as follows: 

 

1 =
∝ 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅)

𝜋1 + ∅1𝑒−𝑌𝑒2  

⟹ ∅1𝑒−𝑌∈2
=∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1∅) −𝜋1 

⟹ −𝑌 ∈2= 𝐿𝑛[(∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) − 𝜋1)/𝜃1]  

⟹∈2=
−𝐿𝑛(∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1∅) −𝜋1)

∅1

𝑦

 

⟹∈= ±√
−𝐿𝑛[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅)−𝜋 

𝜃1
]

𝑦
.  (2-4) 

 

If it exists, this solution represents two single corresponding points, i.e. if 

 

∈1= √
−𝐿𝑛 [

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅)−𝜋1 

𝜃1
]

𝑦
, 

 

∈2= √
−𝐿𝑛 [

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅)−𝜋1 

𝜃1
]

𝑦
. 

 

The single point of the relativistic model of order P. 

 

To find the single point of the relativistic model with a P rank, we disregard the effect of 

{𝑍𝑡} on the proposed model, i.e. Equation (1-7), and thus, we obtain 

 

𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑋𝑡−1
2 𝑋𝑡−𝑖. 

 

By using the single point definition, we derive 
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∈= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑋𝑡−1
2 ∈, 

 

where ∈= 𝑜 is one of the solutions and called the zero point of the model, Equation (1-7). 

 

To find the remaining single points for any given rank, a formula similar to the method used 

for finding individual points when 𝑃 = 1 is adopted. 

 

6. Necessary Conditions for the Model to have a Limit Cycle 

 

Consider the following model: 𝑋𝑡 = 𝑓(𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑃), where 𝑓(. ) is an exponential 

function. 

 

The necessary conditions that must be satisfied for the model to have a limit cycle are as 

follows. 

 

1. All roots of the characteristic equation should lie inside the unit circle when 𝑋𝑡−1 is 

extremely large, i.e. (|𝑋𝑡−1| → ∞). 

2. At least one of the roots of the characteristic equation should lie inside the unit circle 

when 𝑋𝑡−1 is extremely small, i.e. (|𝑋𝑡−1| → ∞).  

3.  
1−∑  𝑃

𝑖=1 𝜑𝑖

∑  𝑃
𝑖=1 𝜋𝑖

< 1   𝑜𝑟  
1−∑  𝑃

𝑖=1 𝜑𝑖

∑  𝑃
𝑖=1 𝜋𝑖

> 𝑜. 

 

7. Limit Cycle for the Proposed Model 

 

We find a limit cycle by using Equation (6-3) and after disregarding the effect of 

disturbances, as follows. 

 

1. When 𝑋𝑡−1 is extremely large, i.e. when it is |𝑋𝑡−1| → ∞, then we obtain magnitude 

𝑒−𝑋𝑡−1
2

→ 𝑜 

 

By substituting it into Equation (7-1), we derive 

 

𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖
𝑋𝑖−1, 

 

which can be written as follows: 

 

𝑋𝑡 = 𝐴𝑖𝑋𝑖−1; 𝑖 = 1,2,3, … , 𝑃;   (2-5) 
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because 

𝐴𝑖 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖
 

 

and its distinctive equation 

 

𝑉𝑃 − 𝐴1 𝑉𝑃−1 − 𝐴2 𝑉𝑃−2 − ⋯ 𝐴𝑃 = 0. 

 

We obtain the roots by solving this equation. 

 

2. When 𝑋𝑡−1 is extremely small, i.e. when it is |𝑋𝑡−1| → ∞. Then, we obtain 

 

𝑒−𝑋𝑡−1
2

→ 𝑜. 

 

By substituting it into Equation (7-1), we derive 

 

𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + 𝜃𝑖
𝑋𝑖−1, 

 

which is an autoregressive model of rank [P], and its 

 

𝑉𝑃 − 𝐴1
′  𝑉𝑃−1 − 𝐴2

′  𝑉𝑃−2 − ⋯ − 𝐴𝑃
′ = 𝑜. 

 

Given that  

 

𝐴1
′ = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + 𝜃𝑖
, 

 

We obtain the roots by solving the equation. 

 

3. A single nonzero point is present and real if the following condition is met: 

 

< 1
[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+𝜑)𝜋1 

𝜃1
]

𝑌
< 0. 

 

8. Single Point Nonzero Stability of the Proposed Model 

 

We test single point nonzero stability by using a local linear approximation method near 

the single point as follows. 
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Given the formulated model, Equation (7-1). 

 

𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑋𝑡−1
2 𝑋𝑡−𝑖 + 𝑍𝑡 

 

We assume that the effect of  𝑍𝑡 is zero and that 𝑖 = 0,1,2, … , 𝑃; 𝑋𝑡−𝑖 =∈ +∈𝑡−𝑖, where ∈ 

is an extremely small amount. We also assume 𝑦 = 1. 

 

∈ +∈𝑡= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−(∈+∈𝑡−𝑖)2 (∈ +∈𝑡−𝑖), 

∈ +∈𝑡−𝑖= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑒−∈2−2∈ ∈𝑡−1 −∈𝑡−1
2

, 

 

where ∈𝑡
𝑛→ 𝑜 for each 𝑛 ≥ 2. 

 

∈ +∈𝑡= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−∈2−2∈ ∈𝑡−1
(∈ +∈𝑡−𝑖) 

 

Given that ∈, ∈𝑡−1 is extremely small, 

 

we assume that 2 ∈ ∈𝑡−1= 𝑜, and we obtain 

 

∈ +∈𝑡= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑒−∈2 (∈ +∈𝑡−𝑖), 

∈ +∈𝑡= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−∈2 ∈.+ ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−∈2 ∈𝑡−𝑖, 

∈𝑡= (∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−∈2 − 1) + ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−∈2 ∈𝑡−𝑖. 

 

We substitute the value ∈ defined in Equation (4-2) as follows: 

 

𝜃1𝑒−∈2
= 𝜃𝑖𝑒

𝐿𝑛(
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+𝜑) 

𝜃𝑖
)

𝑌  

= 𝜃𝑖𝑒
1

𝑌
𝐿𝑛[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+𝜑) 

𝜃𝑖
]
 

= 𝜃𝑖𝑒
𝐿𝑛[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+𝜑) 

𝜃𝑖
]

1
𝑌 
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= 𝜃𝑖[
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜃𝑖
]

1

𝑌. 

 

The form is transformed into 

 

∈𝑡= ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖[
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜃𝑖
]

1

𝑌

∈𝑡−𝑖+ 

(∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖[
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜃𝑖
]

1

𝑌

− 1) (∓√
−𝐿𝑛[∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)  − 𝜋1]

𝑌
), 

∈𝑡= 𝑀 + ∑  

𝑃

𝑖=1

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖[
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜃𝑖
]

1

𝑌

∈𝑡−𝑖. 

 

M represents a fixed quantity. The preceding equation represents a linear autoregressive 

model of rank P without white disturbance, i.e. 

 

∈𝑡= 𝐴 + ℎ1 ∈𝑡−1+ ℎ2 ∈𝑡−2+ ⋯ + ℎ𝑃 ∈𝑡−𝑃.  (2-6) 

 

Given that  

 

ℎ1 =
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜋𝑖+𝜃𝑖[
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜃1
]

1
𝑌

,      (2-7) 

ℎ𝑗 =
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜋𝑗+𝜃𝑗[
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡+∅) 

𝜃𝑗
]

1
𝑌

; 𝑗 = 2,3, … , 𝑃.   (2-8) 

 

By using the stability condition of a linear autoregressive model, we determine that the 

model is stable if and only if all the roots of the characteristic equation lie within the unit 

circle. 

 

𝜆𝑃 − ∑  

𝑃

𝑗=1

ℎ𝑖𝜆𝑃−𝑗 + 𝐴 = 𝑜 

 

9. Condition of Stability Limit Cycle 

 

If a limit cycle is found in the period [q] of the proposed model, Equation (7-1), the first-

order formula of the relative model is 
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𝑋𝑡 = ∑  

𝑃

𝑖=1

∝ 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅)

𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑋𝑡−1
2 𝑋𝑡−𝑖 + 𝑍𝑡 . 

 

When 𝑃 = 1, the following theorem provides the condition of stability in terms of the 

parameters and constants of the preceding model. 

 

10. 3 Theory  

 

Limit cycle in period q (if any) for the preceding model when 𝑃 = 1 is orbitally stable if 

the following condition is met: 

 

|∏  

𝑞

𝑖=1

 [
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋𝑖 + 𝜃𝑖𝑒−𝑌𝑋𝑡−1
2 ]| < 1. 

 

Proof: 

 

We assume that the proposed model, Equation (7-1), has a limit cycle with periods q and 

𝑞 > 1 in the following form: 

 

𝑋𝑡, 𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑞 = 𝑋𝑡. 

 

The path is a closed and isolated. Each 𝑋𝑠 point on a path that is close to a limit cycle can 

be expressed as 𝑋𝑠 +∈𝑠, such that 

 

|∈𝑠| is too small, i.e. |∈𝑠|𝑛 → 𝑜 per 𝑛 ≥ 2 for 𝑠 = 𝑡, 𝑡 − 1. 

 

By concealing the white annoyance effect of 𝑍𝑡, replacing 𝑋𝑡 +∈𝑡 instead of 𝑋𝑡 and 𝑋𝑡−1 +

∈𝑡−1 instead of 𝑋𝑡−1 and assuming 𝑌 = 1 in Equation (7-1) because 𝑃 = 1, we obtain 

 

𝑋𝑡 +∈𝑡=
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−(𝑋𝑡−1+∈𝑡−1)2 (𝑋𝑡−1 +∈𝑡−1), 

𝑋𝑡 +∈𝑡=
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 −2𝑋𝑡−1∈𝑡−1−∈𝑡−1

2 (𝑋𝑡−1 +∈𝑡−1), 

𝑋𝑡 +∈𝑡=
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 −2𝑋𝑡−1∈𝑡−1

(𝑋𝑡−1 +∈𝑡−1), 

∈𝑡=
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 −2𝑋𝑡−1∈𝑡−1

𝑋𝑡−1 +
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 −2𝑋𝑡−1∈𝑡−1

∈𝑡−1− 𝑋𝑡. 
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Given that 

 

𝑋𝑡 =
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 𝑋𝑡−1. 

Then,  

 

∈𝑡=
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 −2𝑋𝑡−1∈𝑡−1

∈𝑡−1. 

 

Considering that ∈𝑡−1 is extremely small, and 𝑋𝑡 = 𝑋𝑡−1 = 𝑋𝑡−2 = ⋯ =∈, then 

𝑋𝑡−1 ∈𝑡−1≅ 𝑜 

 

⟹∈𝑡=
∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+∅) 

𝜋1+𝜃1𝑒−𝑋𝑡−1
2 ∈𝑡−1 (2-9) 

∈𝑡

∈𝑡−1
=

∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 . 

 

In 

 

𝑇(𝑋𝑡−1) =
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤1𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡−1
2 , 

 

Equation (9-2) is expressed in the following form: 

 

∈𝑡= 𝑇(𝑋𝑡−1) ∈𝑡−1, 

i.e. 

∈𝑡+1= 𝑇(𝑋𝑡) ∈𝑡, 

∈𝑡+2= 𝑇(𝑋𝑡+1) ∈𝑡+1, 

∈𝑡+3= 𝑇(𝑋𝑡+2) ∈𝑡+2, 

∈𝑡+𝑞= 𝑇(𝑋𝑡+𝑞−1) ∈𝑡+𝑞−1, 

 

such that  

 

∈𝑡+𝑞= 𝑇(𝑋𝑡+𝑞−1). 𝑇(𝑋𝑡+𝑞−2) 𝑇(𝑋𝑡+𝑞−3) … 𝑇(𝑋𝑡) ∈𝑡. 

 

Therefore, 

 

∈𝑡+𝑞= |∏  

𝑞

𝑖=1

𝑇(𝑋𝑡+𝑞−𝑖)| ∈𝑡 , 
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i.e.  

 

|
∈𝑡+𝑞

∈𝑡
| = |∏  

𝑞

𝑖=1

𝑇(𝑋𝑡+𝑞−𝑖)|. 

 

This ratio must be less than one to converge to zero, i.e. 

 

|∏  

𝑞

𝑖=1

𝑇(𝑋𝑡+𝑞−𝑖)| < 1 

 

or 

 

|∏  

𝑞

𝑖=1

 
∝𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑤𝑖𝑡 + ∅) 

𝜋1 + 𝜃1𝑒−𝑋𝑡+𝑞−1
2 | < 1. 

 

That is, the limit cycle is orbital and with this 

 

Example of Model Application 

 

In this section, we review the numerical examples, determine the conditions for their 

stability and present some forms that exhibit the stability of the proposed model. 

 

1. Example 

 

Given the following model: 

 

𝑋𝑡 =
−0.4 ∗ 𝑐𝑜𝑠 (7.29 ∗ 3 + 1)

−0.4 + 0.4𝑒−0.4𝑋𝑡−1
2 𝑋𝑡−1 + 𝑍𝑡. 

 

From paragraph (7-3), we determine that the stability condition for this model is 

 

0 <
[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+𝜑)−𝜋1 

𝜃1
]

𝑌
< 1. 

 

The condition for stability is 0.140956 because the model is stable at 0 < 0.140956 < 1. 

 

• The following figures illustrate the stability of the model by assuming different initial 

values. 
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Figure 1 

 

As shown in Figure (1), the generated chain of the model does not depend on the initial 

condition, and the paths approach a limit cycle. 

 

2. Example 

 

Given the following model: 

 

𝑋𝑡 =
−0.4 ∗ 𝑐𝑜𝑠 (7.29 ∗ 3 + 0.3)

−0.4 + 0.4𝑒−0.4𝑋𝑡−1
2 𝑋𝑡−1 + 𝑍𝑡. 



Webology, Volume 19, Number 1, January, 2022 

2850                                                  http://www.webology.org 

From paragraph (7-3), we determine that the stability condition for this model is 

 

0 <
[

∝𝑐𝑜𝑠𝑐𝑜𝑠 (2𝜋𝑤1𝑡+𝜑)−𝜋1 

𝜃1
]

𝑌
< 1. 

 

The condition for stability is 4.380573 because the model is unstable at 4.380573 

 

Figure (2) shows the instability of the model. 

 

 
Figure 2 
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From this figure, the model does not have a limit cycle. 
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