
Webology, Volume 19, Number 1, January, 2022

3348 http://www.webology.org

.i – A Complexity Theory based Platform for Model based System

Engineering

Ravindra V Joshi

Research Scholar, Department of Computer Science and Engineering, Noorul Islam Centre for

Higher Education, Kumaracoil, Kanyakumari District, Tamil Nadu, India.

E-mail: rvjoshi18@hotmail.com

N. Chandrashekhar

Professor, Department of Computer Science and Engineering, Noorul Islam Centre for Higher

Education, Kumaracoil, Kanyakumari District, Tamil Nadu, India.

Received September 17, 2021; Accepted December 15, 2021

ISSN: 1735-188X

DOI: 10.14704/WEB/V19I1/WEB19220

Abstract

Complexity Theory and Complex Adaptive Systems is fast emerging as optimal and efficient

design alternative many of the existing technologies to address various functional anon-

functional criterion. However, it remains predominantly laboratory resident software. One of

the main obstacles to convert it into mainstream is its abstract terminology and black box

“emergent” philosophy. In this paper an attempt is made to create a platform on the core

foundation of cognitive agent and complex world concepts. The platform can be used to

develop industry strength products incorporating complexity theory principles.

Keywords

System Engineering, Framework and Components, UML and SysML.

Introduction

Model Based System Engineering (Albert Albers and Christian Zingel, 2013) is here to

stay. Interdisciplinary nature of modern systems, among many others, is primary force

driving this philosophy. It is practically impossible to develop a system by “hand coding”

and everyone has-to resort to some model development and generating the source code

from those models. While this practice is very common in On-Chip software developers

(model sim), physical system (octave, cosim), ui developers (.net wpf designers), even

generation of code from general purpose model languages like UML and SysML is

catching up. However, the algorithms and philosophy used in these systems are those of

regular systems. By very definition, these systems build on each other’s functionality. But

Webology, Volume 19, Number 1, January, 2022

3349 http://www.webology.org

when the nature of computation becomes emergent rather than compositional, these

development approaches, tools are invalidated. In this paper, we will propose a platform

based on which complex adaptive systems (Cladius Gros, 2008) can be developed. We do

not invent any language or tool but show how existing arena of tools can be organized so

that a product can be induced with complex properties and hence can be improved in

many dimensions.

In following section, we describe, different components of.i platform..i naming style was

inspired from.net; i symbolises many things, first, it is present in complex numbers

(x + 𝑖 * y). Secondly, it phonetically sounds “eye” representing cognition. Finally, it

represents sense of ‘self’, identity or consciousness. Thus, i became the choice. Section 2

introduces central premises of [.i] framework Complex World with Cognitive Agents. It

puts forth how challenging problem of evolution as well cognition can be reconciled to

define an integrated system engineering methodology. Section 3.0 introduces challenging

aspect on other side runtime or execution environment complex systems. When the

system being built is mix of real and simulated components, hardware and software

libraries, how runtime should be? Section 4 introduces a concept called iunit basic

element of [.i] framework and components of [.i] are described in terms of it. Section 5

compares [.i] framework with other popular frameworks being in practice today. Section 6

concludes the paper and outlining future work.

Core Principle – Complex World and Cognitive Agent

The central idea of the platform is shown in the figure above. Modern day systems can be

visualized as evolving worlds and cognitive agents with/through it (Ravindra V. Joshi and

N. Chandrashekar, 2019). While world itself does not have any sense of cognition and

reacts purely according to the laws of physics. Interactions of cognitive agents are more

complex. They sense the world (other agents are part of world for an agent), determine

what is best for them (utility-based approach) and react according to that. Thus, world is

governed by complex or evolutionary dynamics whereas agent follows cognitive

dynamics.

Figure 1 Complex World and Cognitive Agents

Webology, Volume 19, Number 1, January, 2022

3350 http://www.webology.org

Evolutionary models particular to complex systems is treated as “Self-Organized Critical

Systems” by (Per Bak et.al, 1988). There it is shown that networks with certain initial

configuration, like game of life will evolve over time and organize themselves in such a

way distribution of changes will follow Power Law pattern. They also argue that this

all-pervasive phenomenon in nature, and this is how some kind of order is emerging in

this chaotic universe. This idea of systems getting self-organized towards critical systems

through evolution is key concept. It allows us to define certain starting conditions and

rules and leave the system to operate by itself. Most of the components of the platform are

designed towards making the world self-organized by (Martin V. Butz and Stewart W.

Wilson, 2002).

On the other hand, cognitive agents (Masafumi Oizumi et al., 2020) observe the external

state and by explicitly analysing regarding the goals they need to reach, they react. This is

different from evolutionary dynamics in the sense that same rule is applied on every

entity. A key question that needs to be addressed is what they are observing and what

awareness they are building about the situation around them. Among the hundreds of

sensory perceptions that are occurring, which should be focussed on? How many pieces of

information must be stitched together to call it “the correct experience”? Once such

awareness comes, deciding action may be of lesser complexity and can be done by many

algorithms. Integrated Information Theory 3.0 treats this problem precisely. It analyses

the question how information received by a mechanism (sub-network) in a system

(network) should satisfy the properties of existence, information, integration, maximalist

and exclusion. A stream of input satisfying these properties at given instance of time will

contribute maximally to consciousness of mechanism. The evolutionary principle of

self-organized-criticality and cognitive principle of integrated information theory together

lay the foundation of.i platform

i Run Time – Basic Infrastructure

A Common Run Time is the first piece of Infrastructure such platform should have.

Motivation is clear. Most of the underlying platforms need runtime. Since .i is being

looked as an integration platform, we have to support all those run times. When

applications are built from multiple sources, they can’t be run any of their parent

environments and hence we need it. This also is going to be most complex part of

platform as most of the other things dealt with source language of their native platform,

whereas this should both run and interpret binaries. A first attempt can be made by

executing each application in their environment and by exchanging just data. Function

call-return semantics also works across boundaries in most of the modern languages.

Webology, Volume 19, Number 1, January, 2022

3351 http://www.webology.org

However, as performance must scale, common run time becomes mandatory Common

Run Time should meet following characteristics.

1. Should be able to execute programs developed in heterogeneous platforms.

2. Symbolic Debugging should be possible for any source.

3. Minimum Garbage Collection and Managed Code support.

4. Metadata for Managed Components should be available.

5. (Stretch)Universal and Distributed Execution (like JVM) should be possible.

Other .i Components

An overview of .i components with its architectural structure is shown below. i unit is

basic unit or element of .i platform. It can engage in various roles. In fact, same i unit can

become domain element in one project and application element in another. However, i

unit itself is immutable.

Figure 2 .i Platform Overview

Webology, Volume 19, Number 1, January, 2022

3352 http://www.webology.org

Different kinds of iunits are defined below:

1. Usage based iunits/Usage Area: .i platform is neither too general nor too

specialized. It tries fill gap in between. For example, .i expects to leverage

peculiarities available to specific area. Also, final deliverable is supposed to be

part of domain artifact (to be used across application), or to add to platform itself,

or to add a particular system/infrastructure where applications are executed, and

finally to direct application itself.

Infrastructure refers deployment architecture where final application will run. This should

be supported on scale ranging (Embedded Processor) like FPGA to Cloud Centric

Infrastructure. This is an essential requirement because, [.i] platform is supposed automate

the process from one level of abstraction (say ABM vs Embedded Processor). In short

term, the focus will be explicitly on Defense, especially in Information Warfare. So

entire.i platform, the complex properties trying to be developed in products will IW

centric. However, it should be noted that.i does not have implicit dependency on IW. In

its framework, Domain’s role is taken IW. It can be equally assumed by any other

domain. But,.i platform expects one to connect to at-least a domain.

2. .i runtime: As explained in previous section, runtime is the essential i unit. It can

be realized in many forms based on the scope of the execution. Some of the

commonly used environments in Industry can be adapted to the idea of .i runtime.

In addition to features to common runtimes following scenarios are envisaged.

a. One-Box refers to an environment where entire system, no matter however

big and complex is realized in a single application. Mostly all the

functionalities are implemented as functions controlled by a single main in the

application. This helps to bring algorithmic aspects.

b. Multi-Box: In Multi-Box, main components of the product are deployed on

different computers as per the final design. They all communicate either

through Ethernet or specific protocols as per the facilities available. Idea is to

take the system realistic to message flowing architecture through

communication with proper protocols. This implements distributed features of

the system.

c. IOT-Rig: This is also called Sensor-Controller-Network. Here an array of

Sensors and Controllers are connected via Network. The sensing, processing,

and controlling is done by processors of low complexity distributed across the

rig. Here basic sensing and control logics are tested. When complex

equipment like are involved, this environment may become very sophisticated

Webology, Volume 19, Number 1, January, 2022

3353 http://www.webology.org

like an echoic chamber, but typically simple tests are envisioned. Full scale

qualifications are deferred to later environments.

d. Arena: Arena is a typically indoor environment, where limited movement of

the objects can be verified. Tracking moving object, navigating around

obstacles holding and moving objects such experiments common to robotics

will be executed in such environments. Limited Flying Avenue also must be

present for validation of airborne scenarios.

3. System Type: Systems can belong to different categories how their constituents

are structured and interact. First level classification can be said to be linear vs

nonlinear. These two require completely different treatments. Further grouping

under each type is shown in the diagram. In one of early classic paper Dr Weaver

has called out four categories of systems called Ordered, Organized Complex and

Disorganized Complex. With discovery of Chaos theory disorganized can further

be split into chaotic and stochastic. This platform should be able to handle each

kind of system. Detailed discussion can be found under (Warren Weaver, 1948).

Sl.

No.

Attribute (Warren

Weaver, 1948)
Complexity Properties

Complexity Theory

Constructs

1. Population Dynamics

1. Generation of Population with given Statistical

Distribution

2. Assignment of basic attributes – development traits

3. Based on Cellular Dynamics

Random Boolean Networks

2.

Structural Dynamics

[Robustness and

Scalability]

1. Robustness of a system can be measured by its

connectivity, redundant connections and vulnerable

centers

2. Scaling out – Adding more members without saturation

3. Self-Similar structures are naturally more scalable.

1. Complex Network Theory

2. Fractals

3a.
Temporal Dynamics-1

[Instantaneous]

1. State of the whole system aggregated together.

2. Next State is calculated by applying delta to each cell.

3. Even nonlinear signal prediction over short time should

be possible.

1. Cellular Automata

2. Agent Based Model

3b.
Temporal Dynamics – 2

[Evolutionary Growth]

1. Long term changes in Complex System

2. Changes in bursts, Punctuated Equilibria

3. Self-Organized Criticality, Power Law Distribution

1. Cellular Automata

2. Graphs

4a.

Causal Dynamics-1

[Cognitive AI - data

mining]

1. Mining, Recognizing Data

2. Deep Neural Networks

3. Integrated Information Theory

1. Deep Neural Networks

4b.
Causal Dynamics -2

[Explanatory AI]

1. Justification of Decisions

2. Robustness to Noise

3. Decision based on Local criteria

4. Decision based on Global Criteria

1. Lime

2. 𝐺𝐴2𝑀

4c.
Causal Dynamics – 3

[Utility Based AI]

1. Single Objective Optimization

2. Multi Objective Optimization.

1. Differential Equations

2. Finite Elements Analysis

3. Soft Computing – Ant

Colony Optimization

4. SyDLC System Development Life Cycle: All the elements defined above define

an environment in which Complex Systems can be built. However, these are not

sufficient. For successful design and development of systems must be available.

Webology, Volume 19, Number 1, January, 2022

3354 http://www.webology.org

These are pre-built components using above concepts. Developers of i units may

be researchers, open source developers, third party vendors or from own team in

previous project. This section, based on Software Factory and Model Based

System Engineering (MBSysE) approach, defines how pre-built knowledge should

be expressed. It is also highly encouraged to develop new components confirming

to new approaches.

a. User Profile: This is domain specific component. It lists what are the

different roles, and use-cases for each role. Given autonomous nature of battle

systems, profiles are made not just for humans, but also for intelligent

systems. Detailed Profile is PACS. i is defined in (Lazaros Moysisa et al.,

2019) specifically for Information intensive mission.

b. (High Level) Design Patterns: Design Patterns document solutions to

common problem occurring in a domain/practice-area and how they should

interact. A standard way of documenting these patterns has been published

with a ready catalogue of patterns.

c. Low Level Design Code: Low level design support consists of algorithms,

sample-code and in bigger projects, library and build information

d. Test Related: Test Cases, Test Data and Test Results. Automation

Framework and Scripts. Support for Verification and Validation

e. Tools: Languages and Scripts automating routine tasks. Integrated

Development Environments (IDEs) stitching all tools together.

Comparative Analysis with Active Protection System as Case Study

In this section, we will compare three successful platforms with [.i] specifications. To

make comparisons concrete, we will consider development of active protection system

(David Adamy, 2003), a system used to protect from shells, ammunition or guided targets

attacked from near-by eye of the sight sources hand-held propellers and rocket launchers.

Even elevated attacks from helicopters are possible. Now, we would analyse how

different requirements can be addressed each of the platforms. The three platforms

considered for comparison are:

.NET: A platform for development of windows-based applications in its flavour. It is

built on top of strong foundation of Common Language Run Time (CLR), Common Type

System (CTS), Intermediate Language (IL) and Visual Studio (VS). Object Oriented

Methodology is the foundation of library. Xilinx Embedded Processors: Xilinx has rich

product line of embedded processors ranging from Simple Microcontrollers to complex

MP-System on Chip and MP-RFSoC Using Vivado as tailorable IDE it has enabled

Webology, Volume 19, Number 1, January, 2022

3355 http://www.webology.org

development of very complex embedded systems in truly short life cycle. NetLogo:

Developed in academic and still maintained in academic environment, it maintains a

repository of working code with elaborate documentation and reference dictionary. It is

interpreted, interactive simulation environment based once extremely popular logo

language. It is causally related to Agent Based Modeling principles and hence Complex

Dynamics.

Figure 3 Active Protection System

COMPARISION OF [.i] FRAMEWORK WITH OTHER CHARTS

Table 1 Comparison of Platforms
Sl.

No.

Platform

Feature
APS Feature .NET XILINX NETLOGO [.i]

1.
Usage

Area

Information

Warfare [4]

Not bound to any

usage area, domain

neutral

[.NET does not

have built in library

for Information

Warfare]

Because of embedded nature,

certain class of applications

are supported. Verticals like

automotive are explicitly

supported

Not linked to

any domain.

1. Demands that

should be associated

with any one

domain.

2. Neutrality is

achieved by bottom-

up approach

2.
System

Type
Complex

Generic

[It does not have

built in support for

Complex system]

Ordered

[Same as before]

Complex

(Nonlinear)

Complex

(Nonlinear)

3. Dynamics Temporal
Limited built in

Dynamics
Third party features available

Primitive

analysis

methods

available

Should support all

dynamics

4. Run Time
Onebox to

Arena

Excellent Onebox,

Multibox

LOW on SCN

integration

GOOD on SCN. Limited

Onebox, Multi-Box
Only Onebox

Limited features on

all environments

5.
User

Profiles
PACS NONE NONE NONE PACS

6.
Design and

Code
NA Very Rich Rich Average NONE [Existing]

7. Test
APS Test

Cases
NONE NONE NONE NONE

Webology, Volume 19, Number 1, January, 2022

3356 http://www.webology.org

Conclusion

It can be seen from the table above, that the parameters are not covered, esp. domain,

system, dynamics related parameters are not covered by existing platforms. While they

excellent towards execution side of the system, shortcomings from requirements side are

many. Also, in recent times, specialized tools like ORCAD for electronic design, CAD for

mechanical, 3D printing form lightweight fabrication are fast establishing themselves. The

philosophy [.i] should assume is to fill the gap on requirement side rather than reinvent

the wheel on execution of.NET, Vivado. Rather, it should build translators from one of

these to other. NETLOGO already has demonstrated how a small, consistent solution can

prove especially useful instead of trying to be all-in-all.

Next, [.i] should tackle problems of type “Complex World, Cognitive Agent” as first

priority and associated concepts strongly rooted on complexity theory can take up later.

Using PACS framework, different Information Centric Battle (Management) Systems

should be built and benchmarks be established.

References

Ravindra, V.J., & Chandrashekhar, N. Optimizing Probability of Intercept using Extended

Classifier System. Poster Presentation at Inter-Research-Institute Student Seminar in

Computer Science which will be held on 6-7 February 2019 at Rajagiri School of

Engineering & Technology, Kochi, Kerala, India

Joshi, R.V., & Chandrashekhar, N. (2018). Discrete time vs agent based techniques for finding

optimal radar scan rate-a comparative analysis. In International Conference on Soft

Computing Systems, Springer, 541-547.

Ravindra, V.J., & Chandrashekhar, N. PACS.i A complexity theory-based framework for Role-

Based Battle Management.

Sun Tzu: Art of War 1st Edition, Jaico (2010).

David Adamy: EW 101: A First Course in Electronic Warfare (Artech House Radar Library),

2020.

Albers, A., & Zingel, C. (2013). Challenges of model-based systems engineering: A study

towards unified term understanding and the state of usage of SysML. In Smart Product

Engineering, Springer, 83-92.

Lazaros, M., Eleftherios, P., Christos, V., Hector, N., Ioannis, S. (2019). A Chaotic Path

Planning Generator Based on Logistic Map and Modulo Tactics. Robotics and

Autonomous Systems.

Per, B., Chao, T., & Kurt, W. Self Organized Criticality-July 1988 Physical Review A, 38(1),

364-367.

Webology, Volume 19, Number 1, January, 2022

3357 http://www.webology.org

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms

of consciousness: integrated information theory 3.0. PLoS computational biology, 10(5).

Warren Weaver – Science and Complexity, American Scientist, 36(536), 1948.

Claudius Gros – Complex and Adaptive Dynamical Systems, a Primer – Springer 2008.

Butz, M.V., & Wilson, S.W. (2002). An algorithmic description of XCS. Soft Computing, 6(3),

144-153.

