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Abstract  
 

One of the main radio technologies that could be used for indoor localization is                          

Ultra-wideband, (UWB). It is a short-range RF technology for wireless communication that 

can be leveraged to detect the location of people, devices, and assets with significant 

precision. But, it has a major limitation which is the need for a non-line-of-sight (NLOS) 

identification and mitigation approach to precise location a target in a hard indoor 

environment. The NLOS approach will complicate the positioning approach. The goals of this 

work are; i- for saving cost and time of installation of anchor nodes, the minimum required 

number of anchor nodes have been installed, ii- the accuracy of the created system should be 

compatible with most various indoor environments. In this work, we create a novel algorithm 

of Indoor positioning system named Enhanced Linearized Least Square (ELLS) using UWB 

technology without using an NLOS identification approach. We evaluate and validate the 

created system by implementing real experiments. The created system has an average 

positioning accuracy reaching about 0.45 𝑚2of mean square error in a hard environment. It 

outperforms most indoor positioning systems in the market with less complexity, cost, and 

more accuracy. 
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Introduction 

 

Continuously, Indoor Positioning Systems (IPS) use a variety of positioning algorithms 

that vary widely in accuracy, cost, precision, technology, availability, scalability and 
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robustness (Huang H, 2009; Gu Y, 2009). Because of the high need for precise indoor 

positioning systems, this has become a hotly debated research topic (Jekabsons G, 2011). 

Position determination is addressed in many techniques by using readily accessible 

technology. Indoor placement is distinct from outside positioning in that it has its own set 

of requirements. Five of the most critical quality factors for indoor positioning systems 

include accuracy and precision of the system, coverage and resolution, the latency in 

giving location updates, the effect on the building infrastructure, and the impact of 

random errors on the system (Wu H, 2009).The use of indoor positioning can be found in 

a variety of settings, including providing indoor navigation systems for the blind, 

determining the location of devices moving through buildings, assisting museum visitors, 

locating an emergency exit in a smoke-filled environment, and tracking expensive 

equipment. IPSs should be carefully selected to meet the needs of various indoor 

positioning applications, which may need a variety of quality parameters. (1) What are the 

most convenient technologies for employing the needed IPS? (2) How can the desired IPS 

be implemented? secondly, To develop an attractive IPS, how can we find the most 

appealing trade-off between several quality measures? The provision of indoor location-

based services is one of the most significant applications of indoor ubiquitous computing. 

Indoor positioning methods have a daunting challenge: obtaining precise measurements of 

their current location (Abdulrahman Alarifi, 2016). Acquiring an IP technique that is 

precise enough, resilient to changes in external circumstances, suited for large regions, 

and as simple as feasible is a difficult job in indoor positioning systems. A wide range of 

methods, including fingerprinting algorithms and geometric approaches like trilateration 

and triangulation, have been proposed. Several IPs are now available for indoor location-

based services based on these technologies. No commercialized IP can solve the challenge 

of locating emergency responders since all solutions involve measurements, calibration, 

setup, and deployment before deployment (Abbas Albaidhani, 2019). WSN is a current 

research topic in which sensor modules, wireless communication modules, and 

information processing modules all connect wirelessly (Aguilar Leocundo, 2011). There 

is a surprising significance of WSN localization technology in tracking control, 

emergency rescue, and product labeling. According to Received Signal Strength Indicator 

(RSSI) ranging, there are various benefits to this technology: The sensor node alone can 

transmit and receive data packets with RSSI sampling values, and no further hardware is 

needed (Priwgharm R, 2011). The distance-based positioning technique is 

straightforward, and the associated software and hardware requirements are modest. Even 

though wireless signals may be affected by non-line of sight (NLOS) propagation, there is 

a substantial inaccuracy in RSSI distance calculation, thus it is vital to rectify and increase 

the predicted distance. 
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Range-based and range-free strategies are used to locate objects in a radio frequency (RF) 

communication network (T He, 2003). A radio signal strength indicator is used in the 

range-free approach (RSSI). From an experimental or theoretical model of signal 

transmission, it is feasible to get distance and location estimations (P Lourenco, 2013;           

L Wu, 2009). Using Time of Arrival (TOA), Time Difference of Arrival (TDOA), or Two 

Way Ranging / Time of Flight (TWR/TOF), it is possible to determine the distance 

between transceivers based on their arrival times (Z Farid, 2013). In the field of indoor 

positioning, UWB is a vital technology, and a comparison of current UWB indoor 

positioning systems is critical. UWB civilian implementations have also been extensively 

investigated and researched across the globe because of the FCC's recent opposition to the 

use of unlawful UWB communications. Research and development work on UWB 

technology has been spurred by the development of international wireless communication 

standards that advocated the use of UWB technology (Al Ammar, 2014). In terms of RF 

technology, UWB is regarded as one of the most precise since it is capable of creating 

centimeter-level positional estimations (M Ridolfi, 2018; S Monica, 2014). It is used 

extensively for distance estimates and the creation of an indoor positioning system. The 

propagation channels in the interior environment are referred to as LOS and NLOS. 

Depending on the radio signal attenuation, the NLOS may be described as soft NLOS or 

hard NLOS. Due to the exact calculation of signal delays in the UWB signals, it is 

possible to achieve very high levels of location precision. It is not always possible to 

determine the distance between the transmitter and receiver based just on propagation 

distance in an indoor scenario (A Yassin, 2016). Because of this constraint, they are only 

able to work in low-light conditions. Accuracy in the LOS channel is excellent, but in the 

NLOS channel, the error in the calculated distance is large, which has a negative impact 

on positioning accuracy (Abbas Albaidhani, 2020; Y Wang, 2012). An NLOS 

identification technique is critical when employing UWB technology to establish an IP 

system in an interior setting, particularly if the environment is hostile. A new NLOS 

identifying mechanism will complicate the Internet Protocol (IP) system, making it more 

difficult, complicated, and expensive to deploy. 

 

The objectives of this work are as follows: i- to minimize the cost and time associated 

with anchor node installation, the bare minimum number of anchor nodes is placed; ii- the 

accuracy of the constructed system should be compatible with a wide variety of interior 

situations. 

 

To accomplish the above objective, we propose the following contribution: I By avoiding 

the use of any NLOS identification method, ii) the created system avoids mathematical 

https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Albaidhani%2C+Abbas
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complexity, iii) the required number of anchor nodes is kept to a minimum (4) anchor 

nodes are installed in a harsh environment, and iv) in a narrow area, the anchor nodes are 

installed randomly with a small number of them, thereby avoiding the cost and time 

associated with geometric installation. 

 

The following sections comprise the paper: Section 2 contains a review of relevant works, 

whereas Section 3 has the system prototype. Section 4 discusses experimental assessment 

and validation. Section 5 contains the conclusion and discussion. Finally, section 6 

includes a conclusion and suggestions for further study. 

 

 Related Work Survey 

 

The authors of (Abbas Albaidhani, 2020) created an indoor positioning approach named 

modified linearized least-square position approach. The goal of this work is to obtain a 

precise estimated positioning approach. They use the combination approach to arrange the 

anchor nodes into distinct groups. Then, they implemented the weighted least square 

method by each anchor node group to allow each group to compute the target position. 

The authors used the anchor selection method (Abbas Albaidhani, 2016) to select the 

appropriate group that has the best estimation position. The Weighted Geometric Dilution 

of Precision (WGDOP) approach is used to choose the optimal anchor group for NLOS 

detection and mitigation. When moving the mobile station, a Linear Least Squares (LLS) 

method is updated to use just the variance of measured distances online to determine the 

new location. The improved LLS is briefly described in the section on system prototypes 

(following section). The algorithm was created in two basic steps. The first step involves 

randomly placing n anchor nodes in a harsh environment and clustering them into groups 

of four to n-1 nodes that communicate with the mobile station through UWB technology. 

To find the mobile station, each group uses a standard Linear Least Squares (LLS) 

approach. The best-performing anchor node group is then picked online using criteria 

called Weighted Geometric Dilution of Precision (WGDOP). To reduce consumption time 

and system complexity, we avoid employing any NLOS approaches. In the second phase, 

we use the improved LLS (created by adding an online vector of measurement distance 

variance to the measurement distance vector in the prime equation of the original LLS) to 

reposition the mobile device relative to the chosen group. The achieved positioning 

precision is around 25𝑐𝑚2 MSE, which is significantly better than previous IP systems 

published in the recent decade. 

 

The author covers anchor-based 3D localisation based on range measurements in his 2010 

publication. Following the establishment of the Cramer Rao Bound (CRB) and its 

https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Albaidhani%2C+Abbas
https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Albaidhani%2C+Abbas
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relationship to GDOP, three numerical optimization methods, such as Newton-Raphson 

(NR), Gauss-Newton (GN), and Steepest Descent (SD), are presented for ML and LS 

localization algorithms and iterative approaches to the ML/LS estimation (SD). In our 

numerical models, the geometric relationship between the agent and anchors, as well as 

the distinction between the CRB and GDOP, can be clearly seen. Our results show that 

the best ML/LS estimator is ML, but the LS estimate isn't. NR, GN and SD approaches 

may be used to approach ML/LS estimation. The number of anchors is also shown to 

affect the CRB. According to equation1 of the ML technique, the distance measurement is 

maximized in order to get the agent's location. 

 

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝 (∑
(𝑟𝑘 − 𝑑𝑘)

2

𝜎𝑘
2

𝑘

𝑘=1

)            (1) 

 

Where r and d are the real and estimated distances, respectively, and r is assumed to be a 

zero-mean independent Gaussian process with variances of 𝜎2, and k is the total number 

of anchor nodes (LEDs). The distance between a starting point and the anchor nodes is 

represented by r_ k. The initial point in traditional ML is fixed and chosen at random. 

Using simulated examples, We demonstrate how the geometry of the link between the 

agent and anchors may affect localization performance, particularly outside the cube 

encompassed by anchors and in the direction from the cube center to each anchor. When 

the changes in range error variations under different SNRs are not modest, the GDOP is 

not a good metric of localization performance. For example, we demonstrate that the SD 

technique may be used to approximate ML/LS estimation, although it has a slow 

convergence rate. It is clear that the ML estimator is the best since it can attain the CRB in 

high SNR circumstances, but the LS estimator can only provide mediocre localization 

accuracy. While the number of anchors that may be used to get range information is 

reduced, the performance of the agent is degraded.  

 

Alwin Poulose, who died in 2018, will be remembered in 2019 (Poulose, 2019). In this 

article, several UWB system localization approaches were examined in detail. There are 

two metrics used to measure algorithm performance: the root means square and the 

cumulative distribution function. The results of the trial suggest that a variety of UWB 

indoor positioning approaches are successful. Compared to other methods like linearized 

least squares and weighted centroids, this one is more efficient. The linearized least square 

approach was shown to be unsuccessful for indoor UWB localization, as evidenced by the 

testing. 
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To locate a UWB within a building, fingerprint estimates are the most common method of 

locating it. When comparing the current tag distance to an existing fingerprint database, 

this method builds a fingerprint map based on the relationship between tags and anchors. 

There are many grid points across the trial area where we measure the distance from each 

of these places to a tag. The offline phase is the name given to this stage. Repeat the 

experiment and note the tag distance from each anchor after establishing the fingerprint 

database. Online phase is the term for this stage. The Euclidian distance is calculated by 

comparing the distance data from the online and offline phases. The shortest possible 

Euclidian distance is used to determine the tag's actual location. 

 

Table 1 Performance of the localization algorithms for LOS condition 

Localization 

method 

Mean error (m) Max. error (m) Min. error (m) Average 

computation time 

(m) 

LLSE 

FPE 

WCE 

0.7491 

0.7273 

0.7009 

1.0101 

0.83 

0.96 

0.0017 

0.0053 

0.001 

1.5136 

1.4649 

1.4578 

 

FPE beats the LLSE and WCE algorithms in terms of location accuracy, according to 

Table 1. However, FPE requires prior knowledge of the experiment region as well as 

manpower to collect fingerprint data. FPE must update the fingerprint database whenever 

the experiment setting changes. 

 

The performance of various indoor localization techniques for UWB was investigated in 

this paper. For both LOS and NLOS circumstances, the FPE algorithm performs better. 

FPE, on the other hand, has a longer computing time and is more complex than LLSE and 

WCE. The precision of the position is determined by the length of the experiment. The 

FPE algorithm performs worse as the experiment time increases as compared to LLSE. 

With more time, the LLSE algorithm can accurately position itself. In comparison to the 

LLSE, the performance of the FPE and WCE is comparable at times. 

 

It was revealed that RSSI range error has a direct influence on the system's overall 

positioning accuracy, and so a weighted maximum likelihood estimation positioning 

technique was presented in 2017 by (Qiang, 2017). A weight matrix of the distance's 

inverse square is added into the standard maximum likelihood estimation algorithm as a 

theoretical derivation shows that the square of distance and method placement accuracy 

are inversely related. This technique decreases errors by 0.45-1.87 m and increases 

accuracy with the same error range when tested, according to findings. Based on "the 

greater the distance between nodes, the corresponding coordinates of nodes, the lower [the 
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weight]," we'll come up with an entirely new method for computing an appropriate 

weighting matrix. When a mobile node is in close proximity to a fixed anchor node, that 

distance is measured. Mathematical software for the experimental simulation development 

is 2013 MATLAB, which has an experimental site that is around 50 meters by 50 meters. 

Divided into six 6-by-6-by-6 squares with 198 corners, the entire area is divided into six 

6-by-6-by-6 squares. In each experiment, just one of the vertices represents the actual 

location of the mobile nodes. The following simulation was run to evaluate the aforesaid 

weight positioning algorithm and increase positioning accuracy: The anchor node 

positions are created at random, and the true position of the movable node is determined 

by randomly selecting a vertex. The distance between the mobile and anchor nodes is 

multiplied by a random white noise with a mean of 0 and a variation of 2 to replicate the 

real-world environment. Our weight matrix W will be the 1/d2 matrix since it's easier to 

understand. The 1/d2 matrix is the term given to the localization process since it estimates 

location more closely than other weights do. The weight of 1, 1/d, and 1/d2 placement 

strategies are used for the 100 simulations to provide three different results. Localization 

algorithms under different weighting matrices have a minimum error of 0.55 m, a 

maximum error of 10.05 m, and an average error of 3.68 to 4.22 m, respectively. Weights 

1/d2 are 0.48-0.58m more accurate in their location than other types of weights. Antenna 

node density more than 10%, and the 1/d2 weight of a maximum likelihood estimate of 

positioning error, is smaller than that of the other, and 1/d2 weight is less than the other. 

3D weighted maximum likelihood estimation is more accurate than the 3D maximum 

likelihood estimation method and has a lower error rate than the previous approach. Based 

on the RSSI approach, as a consequence, it is worthwhile to investigate the problem to 

assure adequate weight and RSSI-ranging accuracy. 

 

In 2021 Wenxu Wang, Particle filtering is a prominent method for tackling the indoor 

dynamic localization problem based on Wi-Fi measurements. However, one disadvantage 

of this approach is that accurate findings in real surroundings require a huge number of 

particles. The reason for this disadvantage is that traditional particle filtration wastes 

many superfluous particles in this application (Wenxu Wang, 2021). To address this, we 

present the maximum likelihood particle filter, a revolutionary particle filtering approach 

(MLPF). The key concept is to combine the particle prediction and update phases into a 

single step that makes efficient use of all particles. This dramatically decreases the 

number of particles, resulting in numerically practical, high-accuracy algorithms. We 

present experimental results based on genuine data to back up our argument. 

 

Maximum probability particle filtering is a novel indoor positioning approach that we 

suggested. Combining prediction and update procedures of a standard particle filter into 
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one step needs the solution of a maximum likelihood estimation issue as its basic idea. As 

a result, particles are better used. In comparison to particle filtering, the method obtained 

delivers high precision indoor placement with a significantly smaller number of particles. 

This makes real-time applications numerically possible. We used real data to back up our 

assertions in a Wi-Fi indoor positioning experiment. Our experiments show that using our 

strategy leads to significant accuracy gains, with sub-meter indoor localization accuracy. 

 

System Prototype  

 

In this section, we present the entire structure of the proposed IP system. In this work, we 

install four anchor nodes randomly (at least we need four nodes to compute target position 

in space) as shown in figure 1. UWB technology by an electronic transceiver named 

decawave (tow way ranging) (TREK 1000) evaluation kit is used in this experiment to 

communicate with a moving target inside a hard indoor environment. All specifications 

and characteristics of this sensor is explained briefly by (Decawave, 2014). Also, the 

transceivers have to be placed in the Fresnel zone (FZ) (A Albaidhani, 2016). In equation 

2 below, R expresses the radius of the first Fresnel zone, 𝜆 denotes the wavelength of the 

radio signal, and the distance between sites is denoted by r. 

 

𝑅 =
1

2
√𝜆. 𝑟           (2) 

 

 
Figure 1 Mobile station positioning in three space 

 

After anchor nodes and target connection, we extract the measured distance between 

every anchor node and the target as shown in figure above. Then, we compute estimated 

mobile position using the proposed IP algorithm as explained later. In the subsection 

below we explain the least square estimation method for localization.  
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a. Least Square Method 

 

The Euclidian distance between any two points in space (three dimensions) is expressed 

as in equation 3.  

 

𝑟 = √(𝑥𝑛 − 𝑥)2 + (𝑦𝑛 − 𝑦)2 + (𝑧𝑛 − 𝑧)2      (3) 

 

Where, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 denotes the coordinates of the anchor node and n denotes the index of 

the anchor node. 𝑥, 𝑦, 𝑧 denote the coordinates of the mobile station (M).  

 

A positioning algorithm should be applied once the distances (r) between entire anchor 

nodes and the target are measured to compute the mobile position. The common and 

simplest positioning approach that has been implemented for RSS-based localization is 

the hyperbolic positioning algorithm. As we explained above, r denotes the real distance 

and let denote the measured distance extracted from the sensor as d then the error is 

computed as presented in equation 4. 

 

𝜖 = ∑𝑑𝑖 − 𝑟𝑖                                                     (4)

𝑚

𝑖=1

 

 

Where, m denotes the index of the mobile station. The estimated position 𝑀̂ could be 

computed as shown in equation 5 iteratively utilizing a straight gradient method for an 

example. 

𝑀̂ = [
𝑥̂
𝑦̂
𝑧̂

]

𝑚+1

= [
𝑥̂
𝑦̂
𝑧̂

]

𝑚

− 𝛼

[
 
 
 
 
 
𝜑𝜖

𝜑𝑥
𝜑𝜖

𝜑𝑦
𝜑𝜖

𝜑𝑧]
 
 
 
 
 

𝑥=𝑥𝑚̂,𝑦=𝑦𝑚̂,𝑧=𝑧𝑚̂

(5) 

 

Where, 𝛼 denotes a scalar selected to minimize 𝜖. Also, 𝑥̂, 𝑦̂, 𝑎𝑛𝑑 𝑧̂ denote the estimated 

coordinates of the 𝑀̂. In the aforementioned equation (equation 5), an initial value of the 

position estimation is needed. To convert this nonlinear into a linear problem, the 

hyperbolic positioning algorithm is used by implementing least square method as we 

presented. Equation 6 shows the compact equation of linearized least square method 

(LLS). 

 

𝑀̂ = [
𝑥̂
𝑦̂
𝑧̂

] = (𝐴𝑇𝐴)−1𝐴𝑡𝑏 + [

𝑥1

𝑦1

𝑧1

] (6) 
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Where, A denotes the matrix of the anchor nodes coordinates, and 𝑏 denotes the estimated 

distances measurements as shown below. 

𝐴 =  [

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1

𝑥3 − 𝑥1

⋮
𝑥𝑛 − 𝑥1

𝑦3 − 𝑦1

⋮
𝑦𝑛 − 𝑦1

𝑧3 − 𝑧1

𝑧𝑛 − 𝑧1

] 

 

𝑏 = 0.5 [

(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 + 𝑑1

2 − 𝑑2
2

 (𝑥3 − 𝑦1)
2 + (𝑦3 − 𝑦1)

2 + (𝑧3 − 𝑧1)
2 + 𝑑1

2 − 𝑑3
2 ⋮

(𝑥𝑛 − 𝑥1)
2 + (𝑦𝑛 − 𝑦1)

2 + (𝑧𝑛 − 𝑧1)
2 + 𝑑1

2 − 𝑑𝑛
2

] 

The proposed system (ELLS) is explained in the following subsection.  

 

b. Proposed System  

 

The original modified linearized least square algorithm (MLLS) derived is used in this 

work to compute the initial estimated position of 𝑀̂. Equation 7 expresses the original 

MLLS. 

𝑀̂ = [
𝑥̂
𝑦̂
𝑧̂

] = (𝐴𝑇𝐴)−1𝐴𝑇(𝑏 − 𝑇) + [

𝑥1

𝑦1

𝑧1

] (7) 

Where, T denotes the vector of variance of measured distances expressed. The variance of 

the distance is extracted in live statues from the UWB device when this device provides 8 

distance measurements every seconds. 

𝑇 = 𝛼

[
 
 
 
 
𝜎1

2 − 𝜎2
2

𝜎1
2 − 𝜎3

2

⋮
𝜎1

2 − 𝜎𝑛
2

]
 
 
 
 

  

where 𝛼 denotes a scalar which is determined based on the type of environment and 𝜎 

denotes the variance of the measured distance by the sensor.  

 

Then, after having it, we compute the new estimated distance (𝑑̂) between the initial 

estimated position (𝑀̂) and each anchor node as shown in equation 8. 

𝑑̂ = ‖𝐴𝑛 − 𝑀̂‖ = √(𝑥𝑛 − 𝑥̂)2 + (𝑦𝑛 − 𝑦̂)2 + (𝑧𝑛 − 𝑧̂)2 (8)  

Finally, we modify 𝑏 vector by the new estimated distance to be (𝑏̂) using the new 

distances 𝑑̂ as shown below, and maiming the value of the scaler (𝛼) that multiplies the T 

vector in the original MLLS to recomputed the mobile position using the proposed 

modified least square method by as shown in equation 9 below. 

𝑏̂ = 0.5 [

(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 + 𝑑1̂

2
− 𝑑2̂

2

 (𝑥3 − 𝑦1)
2 + (𝑦3 − 𝑦1)

2 + (𝑧3 − 𝑧1)
2 + 𝑑1̂

2
− 𝑑3̂

2
⋮

(𝑥𝑛 − 𝑥1)
2 + (𝑦𝑛 − 𝑦1)

2 + (𝑧𝑛 − 𝑧1)
2 + 𝑑1̂

2
− 𝑑𝑛̂

2

] 
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𝑀̂ = [
𝑥̂
𝑦̂
𝑧̂

] = (𝐴𝑇𝐴)−1𝐴𝑇(𝑏̂ − 𝑇̂) + [

𝑥1

𝑦1

𝑧1

] (9) 

𝑇̂ = 𝛼̂

[
 
 
 
 
𝜎1

2 − 𝜎2
2

𝜎1
2 − 𝜎3

2

⋮
𝜎1

2 − 𝜎𝑛
2

]
 
 
 
 

 

 

Where 𝛼̂, denotes the new scaler which is should be lower than the original 𝛼 and based 

on the indoor environment. This scaler (𝛼) should be lower than the scaler with the 

original scaler. Also, it is based on the indoor environment as shown in the diagram 

below.  

 

 
Figure 1.1 Diagram of the proposed IPs approach 
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Experimental Evaluation and Validation 

 

In this work, we present real experiment to evaluate the proposed algorithm of IP system 

(ELLS) using UWB technology. The UWB sensor used for this experiment is called 

Decawave 1000 (EVK 1000, TREK 1000). This device manufactured by Decawave 

company was explained briefly. The following subsection explains the installation of 

these devices as anchor nodes and a target.  

 

a) Setting up the Experiential Scenarios 

 

This work is presented in the ground and first floor in the Al-Manara College For Medical 

Sciences. The area used for the experiment is about 4.8 m width, 20 m length, and 4.4 m 

high. Four anchor nodes are installed randomly with known positions in a narrow area            

(4 m length and 3 m width) to simulate the implementation of the created IP system for 

emergency situation. These anchor nodes are placed in 1.8 m above the ground and 

communicated to a target using UWB technology as shown in figure 2. To maintain signal 

strength, the UWB sensors are placed in a Fresnel Zone (FZ) as presented in equation 10 

below. In the equation below, r is presented for radius of the first Fresnel zone, 𝜆 denotes 

the wavelength of the radio signal, and the distance between sites is denoted by d. Table 

2. depicts the FZ of the two channel models used by UWB EVK 1000. We implanted 

channel model in this experiment. As mentioned by, the channel 2. outperforms channel 

3. in indoor environment, so, we implanted channel 2 model in this work.  

 

 𝑟 = 0.5√𝜆. 𝑑  (10) 

 

 
Figure 2 The installed anchor nodes in the real environment 
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Table 2 Fresnel Zone (FZ) for Channel 2 and Channel 3 

Channel Fc (MHZ) Band Width (MHZ) FZ Radius Bottom cm FZ Radius Top cm 

2 3993.6 3774 - 

4243.2 

44.6 42 

3 4992.8 4243.2 - 

4742.4 

42 39 

 

Two different track scenarios of the target while moving in an indoor harsh environment 

throw different propagation channels are present as shown in figurer 3 (a and b). 

 

 
Figure 3 The real track of scenario 1 

 

b) Proposed Approach (ELLS) 

 

As mentioned in figure 2, the proposed approach consists of different steps. In the 

beginning, we installed four anchor nodes having three coordinates as presented below. 

  

Anchor node 1 (A1): x1=0 m, y1=0 m, z1=0 m. Anchor node 2 (A2): x2=1.84 m, y2=3.67 

m, z2=0 m, Anchor nod 3 (A3): x3=3.70 m, y3=1.22 m, z3=0 m. Anchor node 4 (A4): 

x4=-1.84 m, y4=3.6 m, z4= 0 m.  

 

After the communication between all anchor nodes and the target using the UWB devices 

is commenced, the target starts moving from point to point in the ground floor, then using 

stairs to go to the first floor creating a track for the first and second scenarios. We 

compute the estimated position of the target using the modified linearized least square 

(MLLS) approach. Then, we recomputed the estimated distance using the anchor nodes 

and the estimated position of the target. So, we modify the vector of the measured 

distance (b) by replacing the new computed estimated distances (𝑏̂) with the measured 
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distances. Also, modifying the scaler that multiplies the vector of the measured distances 

(T) by multiplying it with the modified scaler (𝛼̂). Finally, we compute the new estimated 

position using equation 8 above.  

 

Result and Discussion 

 

As aforementioned in the previous section, two scenarios have been implemented.  

 

In the first scenario, the target crate a track of 15 points (figure 3) moving around a 

corridor of 4.8 m width then using the stairs to move up to the second floor. Different type 

of obstacles (iron, wood, brick, and concrete walls) have been passed by the target, which 

faces different types of the propagation channels. The propagation channels are line of 

sight (LOS), soft non line of sight (SNLOS), and hard NLOS (HNLOS) channel. 

 

To evaluate and validate the proposed approach, it is compared to three different 

approaches, positioning approaches, (conventional linearized least square (CLLS), 

modified least square (MLLS), and maximum likelihood estimation method (ML)). 

Figures 4a, 4b, 4c, and 4d present the estimated tracks for the proposed and related 

approaches The mean square error and its cumulative distrusted function (ECDF) are used 

to evaluate the proposed approach. As shown in table 3 and figures 4 and 5 respectively, it 

is so clear that the proposed approach outperforms the other approaches when having 

about 0.3 𝑚2 of MSE in average and 0.0140 𝑚2 of MSE in minimum values, and 2.65 𝑚2 

of MSE in maximum value, while other approaches have lower accuracy as shown in the 

tables and figure below. 

 
a. The real and estimated track by the proposed b. The real and estimated track by 

modified LLS [17] 
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c. The real and estimated track by maximum likelihood approach [18] d. The real and 

estimated track by conventional LLS 

 

Figure 4 The estimated tracks by proposed, MLLS, CLLS, and ML approaches                

(scenario 1) 

 

Figure 5 depicts the ECDF of MSE for the proposed and three related positioning 

approaches. Table 3 presents the average, minimum, and maximal values of the proposed 

and three related approaches.  

 

 
Figure 5 The ECDF of MSE for the proposed and three related approaches of positioning 

(scenario 1) 

Table 3 The MSE values for the proposed and three related approaches of positioning 

(scenario 1) 

MSE 𝒎𝟐 Proposed approach ML approach  MLLS approach CLLS approach  

Average 0.3680 1.2668 1.9767 8.1088 

Minimum 0.0104 0.0233 0.0104 0.0104 

Maximum  2.6206 14.8478 15.8680 76.3591 
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In the second scenario, we created different mobile track travelling through different 

propagation channel. This track consists of 14 different points. Figure 6 presents the real 

target track. we installed four anchor nodes having three coordinates as presented below. 

 

Anchor node 1 (A1): x1=0 m, y1=0 m, z1=0 m. Anchor node 2 (A2): x2=1.84 m, y2=3.67 

m, z2=0 m, Anchor nod 3 (A3): x3=3.70 m, y3=1.22 m, z3=0 m. Anchor node 4 (A4): 

x4=-1.84 m, y4=3.6 m, z4= 0 m.  

 

 
Figure 6 Real track (14 points) in scenario2 

 

Figure 7 presents the real target with the estimated targets by the proposed approach, 

Modified LLS, conventional LLS, and Maximum likelihood.  

 

 
a. The real track and the proposed track b. The real track and the estimated track by [17] 

MLLS 
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c. The real track and the estimated track by maximum likelihood approach [18] d. The real 

track and the estimated track by conventional LLS 

Figure 7 The proposed algorithm compared to three different IP systems (scenario 2) 

 

To finalize the evaluation process, we also compute the ECDF of MSE for the proposed 

approach and three different related approaches. Figure 8 presents the ECDF.  

 
Figure 8 The ECDF of MSE (𝒎𝟐) of the proposed and three related IP systems (Scenario 2) 

 

Table 3 presents The MSE of the proposed approach and the related IP systems in 

scenario 2. The results of scenarios 1 and 2 show that the proposed approach significantly 

outperforms the other related approaches.  
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Table 3 The MSE values for the proposed and three related approaches of positioning 

(scenario 2) 

MSE 𝒎𝟐 Proposed approach ML approach  MLLS approach CLLS approach  

Average 0.1716 1.4012 2.9733 7.9604 

Minimum 0.0172 0.0086 0.0104 0.0104 

Maximum  0.4726 6.2266 0.0173 0.0535 

 

From these figures and tables, we can observe that the related approaches used in this 

work droop deeply the accuracy in some points of both scenarios. This is because these 

points face significant distance measurements error reaching about 0.9 𝑚 due to the UWB 

signal travels through a hard NLOS propagation channels. While, the proposed approach 

fixes this problem to enhance significantly the accuracy for the same situation.  

 

Conclusion 

 

The positioning accuracy with saving cost and the installation time of the anchor nodes in 

hard environment for different situations such as emergences are the goal of this work. In 

this paper, we present an IP system named Enhance Linearized Least Square (ELLS) that 

could be implemented in NLOS and LOS propagation channels using UWB technology. 

This approach avoids the cost and complexity by using minimum required anchor nodes 

and avoiding the NLOS identification and mitigation process. The created approach is 

implemented by real experiments with two different scenarios. Also, it is evaluated and 

validated by comparing it to different related IP approaches. We confidently claim that the 

created approach outperforms most IP systems in the market by enhancing the positioning 

accuracy to reach about 0.45 𝑚2 in average for different environments.  
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