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Abstract 

 

Uncertainty is a ubiquitous element in available knowledge about the real world. Data 

sampling error, obsolete sources, network latency, and transmission error are all factors that 

contribute to the uncertainty. These kinds of uncertainty have to be handled cautiously, or else 

the classification results could be unreliable or even erroneous. There are numerous 

methodologies developed to comprehend and control uncertainty in data. There are many 

faces for uncertainty i.e., inconsistency, imprecision, ambiguity, incompleteness, vagueness, 

unpredictability, noise, and unreliability. Missing information is inevitable in real-world data 

sets. While some conventional multiple imputation approaches are well studied and have 

shown empirical validity, they entail limitations in processing large datasets with complex 

data structures. In addition, these standard approaches tend to be computationally inefficient 

for medium and large datasets. In this paper, we propose a scalable multiple imputation 

frameworks based on XGBoost, bootstrapping and regularized method. XGBoost, one of the 

fastest implementations of gradient boosted trees, is able to automatically retain interactions 

and non-linear relations in a dataset while achieving high computational efficiency with the 

aid of bootstrapping and regularized methods. In the context of high-dimensional data, this 

methodology provides fewer biased estimates and reflects acceptable imputation variability 

than previous regression approaches. We validate our adaptive imputation approaches with 

standard methods on numerical and real data sets and shown promising results. 
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Introduction 

 

Real-world data sets frequently contain information derived from several sources, each of 

which uses a different measuring unit, data encoding, or data structure, resulting in a 

plethora of inaccuracies. In particular, they are frequently accompanied by several 

characteristics that have only been partially noticed. In the recent past, significant work 

has been made on the subject of "missing data," with the majority of the effort focusing on 

statistical inference. Multiple imputations (MI), first introduced by Rubin (1978) Liu 

Schafer JL (1997). Have received increasing recognition in dealing with missing data as it 

can reduce bias and represent the uncertainty of missing values. Instead of a single value 

being substituted for a missing value in an incomplete dataset, a list of probable values is 

substituted for each missing value Sengupta S., Das A.K. (2012). Afterwards, analysis can 

be carried out individually on entire imputed datasets, with the results being pooled to 

produce reliable inference Liu Schafer JL (1997). One main flaw of traditional MI 

implementations is that they fail to capture complex relations among variables 

automatically (Gupta, M.K., Chandra (2020). Another disadvantage of existing MI 

frameworks is the excessive computation time for large datasets Liu Xingyi. Fillingetal. 

2009) (K. Lavanya et al, 2012). When there are reasonably large amounts of missing 

values present across many variables, this problem can become unmanageable. Applying 

Machine Learning (ML) techniques to multiple imputation can help to tackle the 

computational bottleneck, but the validity of imputed values obtained by current                  

ML-based implementations is questionable Liu Xingyi et al, 2010). Additionally, 

measures like Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are 

used to verify XGBoost-based imputation models, which likewise try to restore the true 

data rather than representing uncertainty in the absence of missing values. Regularized 

regression has been proposed as a logical solution to the problem of developing 

imputation models in the presence of large amounts of high-dimensional data, and in this 

case it appears to be a logical solution to the problem of developing imputation models 

when dealing with large amounts of high-dimensional data. Regularized estimators come 

in a variety of shapes and sizes, with the Ridge Penalty being one of the most popular. 

Lasso Penalty, Adaptive Lasso, and the EasticNet (EN) Penalty Large amounts of data 

necessitated the use of regularized approaches and bootstrap combinations to fit the 

imputation model. This section describes theories and concepts. In Section 3, described 

about proposed MI with xgboost, Regularized Regression and Bootstrap. The Section 4 

provided results of the proposed method over numerical and real data sets. In section 5, 

mentioned conclusion. 
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Related Theories and Concepts 

 

A. Categories of Missing Values 

 

Missing data is classified into two categories: ignorable and non-ignored. Ignore the case 

where the probability of missing data is determined by the data that is visible rather than 

the data that is missing. The amount of missing data, rather than the amount of observed 

data, determines the probability of missing data at non-ignorable. Let ( ) ( )ij
X= x : n k  

rectangular data set without missing values. If ( )ij
mM =  then

ij
m 1= if

ij
x  is missing and

ij
m = 0  if 

ij
x  is present. Further in line to ignorable and non-ignorable missing data 

mechanisms classified into three types MCAR, MAR and NMAR. 

 

• Missing completely at random (MCAR): Mechanism for missing data that is 

independent by data values X (Missing- miss
X - or Observed- obs

X ). 

• Missing at random (MAR): The mechanism of missingness is only dependent on 

obs
X , not on miss

X . 

• Not missing at random (NMAR): The mechanism of missingness is dependent on 

miss
X . 

 

 
Fig. 1 Classification of Missing Data 

 

Various techniques are available for treating missing data; a few techniques are described 

below[18]. Missing data treatment techniques can be classified into three classes, 

Traditional Approaches and Modern Approaches as shown in figure 2. 
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Fig. 2 Methods for handling Missing Data 

 

In addition, the incidence of missing data can result in major difficulties for researchers. 

In fact, improper treatment of missing data during data analysis might result in bias being 

discovered and unclear conclusions being formed from a research study, as well as 

limiting the generalizability of the research findings. When there is a lack of data in DM, 

three sorts of difficulties are commonly encountered: 

 

• Efficiency loss. 

• Complexity in handling and analysing the data. 

• Unfairness caused by discrepancies between incomplete and complete data. 

• Efficiency loss. 

• Complexity in handling and analysing the data.  

• Unfairness resulting from differences between missing and complete data. 

 

B. Multiple Imputation(MI) 

 

Using Multiple Imputation (MI), we can create M imputed datasets and fit our complete 

data model to each of them, resulting in estimates
m

θ̂ m=1,2...,M .as well as corresponding 

within imputation variance estimates
m

ˆVar(θ ) . The estimation θ of is provided by. 

M-1

M mm=1

ˆ ˆθ M θ=     (1) 

While the variance is estimated by, 

2 2

m btw wtn

1ˆVar(θ ) 1+ δ δ
M

= +
 
 
 

  (2) 

Where 

M
2

wtn m

m=1

1 ˆδ Var(θ )
M

=     (3)  
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M
2 2

btw m M

m=1

1 ˆ ˆδ Var(θ θ )
M-1

= −   (4) 

 

The variance estimator is asymptotically unbiased for finite M . Because of this, when the 

variance estimator, which is used to estimate the repeated sampling variance
M

θ̂  of, is not 

properly calibrated, it can be biased either downward or upward, depending on the 

situation. When each dataset is imputed using the maximum likelihood estimate from a 

parametric imputation model and the imputations are analyzed using a non, semi, or fully 

parametric model. The between imputation covariance can be used to calculate variance 

estimates
'

m m M m Mm

1ˆ ˆ ˆ ˆ ˆVar(θ ) (θ θ )(θ θ )
M

= − −
 
 
 

  and the average within imputation 

covariance
m

*

b
ˆW Cov(θ )= : 

 
M

M m
m=1

M
'

m MI m MI
m=1

M+1 1ˆ ˆˆCov(θ ) W V= Cov(θ )
M M

M+1 ˆ ˆ ˆ ˆ(θ θ )(θ θ )
M(M-1)

= + +

− −





   (5) 

 

In the scalar case, a R
t  -distribution with approximately can be assumed to

1
-

2

M M

ˆ ˆVar(θ ) (θ θ)−  construct confidence intervals for
M

θ̂ . There exist degrees of freedom, 

even if there are other approximations 2
R (M-1)[1+{MW/(M+1)}]= , especially for small 

samples. 

 

Multiple Imputation with Bootstrapping 

 

Let us consider a situation in which there is no analytic or ideal solution to estimate 

m

ˆCov(θ ) the outcome. The following bootstrap percentile confidence intervals can be used 

to order a solution if there are no missing data points: based on B  the results of bootstrap 

samples
b

D
  for example 1 2b , , ..,B= . We are able to obtain B point estimates *

b
θ̂ . Consider 

the ordered set of estimates * *

B b

ˆ{θ ; b=1,2,...,B} =  where 
1 2

* * *

( ) ( ) (B)

ˆ ˆ ˆθ θ θ...    and the 

bootstrap confidence interval for θ  is. 

 
1* *

(1ower) (upper)

*,α *, αˆ ˆ ˆ ˆθ θ θ θ ;  ; −   =    (6) 
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The  - percentile of the ordered bootstrap estimates *

B
  is represented by the symbol. For 

this data set obs mis
D {D , D }= , multiple imputation is used to fill in the gaps. There are two 

options for each of the M imputed data sets m
D . Samples of Bootstrap code are drawn 

M B , resulting in data sets m,b
 D ;


b=1,2,...,B ; m =1,2,...,M being produced. Each imputed 

data set is subjected to a set of bootstrap samples in order to estimate the standard error *

M
θ̂

, in each imputed data set respectively, i.e.,
1 2

m
m,bm,bb

ˆVar(θ )=(B-1) ˆ ˆ(θ θ )−
− with

m
-1

m,bb
θ̂ B  ˆ= θ . This gives M point estimates and M standard errors. In this approach, 

MI is used first, followed by bootstrapping on each imputed dataset. The following is the 

algorithm: 

Algorithm: Multiple Imputation with Bootstrapping 

1. Complete datasets are created by imputing missing values into the observed data and 

then completing the datasets. The analysis model should be fitted to each estimate. 

2. Draw bootstrap samples for each imputed dataset. 

3. For imputation m ,then calculate  

1 2

m
m,bm,bb

ˆVar(θ )=(B-1) ˆ ˆ(θ θ )− −  

 where m
-1

m,bb
θ̂ B ˆ= θ  

4. After that, the Rubin's rule is applied, with
m

θ̂ ( m =1,2,...,M ) representing the point 

estimates and 
m

ˆVar(θ )  ( m =1,2,...,M ) representing the complete data variance 

estimates. 

Under congeniality variance estimates
m

θ̂  are provided by MI boot Rubin, which is 

asymptotically unbiased. We can't anticipate this method to generate unbiased variance 

estimates in all circumstances of uncongeniality because it is based on Rubin's criteria. 

 

XGBOOST 

 

The XGBoost model, which primarily leverages the gradient boosting framework for 

optimal estimations, is one of the most effective algorithms in machine learning. XGBoost 

is a type of boosting technique that converts weak learners into stronger ones, thereby 

improving the random guessing process. Boosting is a prominent technology that involves 

developing trees using information from previously produced trees in a sequential process 

that follows one another. The approach also provides a high rate of regularization when 

boosting the model and effectively handles missing values. The gradient boosting decision 
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tree was used to create XGBoost, which was built on top of the CART tree. The following 

is the goal function: 

T
2

n j j j j

j=1

Obj
1

= ω G + ω (H +λ) +γT
2

 
 
 

    (7) 

 

j
ω is the weight of leaf node j ,

j j

j j

i i

i I i I

G H= g , = h
 

  .
i

g and 
i

h are respectively the first and 

second derivatives of (t-1)

i
ŷ on the loss function 

j

t (t-1)

i i
ˆl(y y , I, ) is the set of samples contained 

on the leaf with index j .The objective function takes the minimal value as well, resulting 

in the quadratic function having a derivative. A quadratic function is taken as a derivative 

j
w by each leaf j , and this derivative is zero for extreme values.  

 

*

j

j

j

ω
G

(H +λ)
=        (8) 

1

2

2
T

j

n
j=1 j

Obj
G

γT
(H +λ)

=- +      (9) 

 

When a leaf node is split, the gain after the split is calculated, 

 
2

1

2

2 2

L R L R

L R L R

Gain=
G G (G G )

γ
(H +λ) (H +λ) (H H +λ)

+
+ − −

+

 
 
 

   (10) 

 

Calculate the gain on each branch point of all features in order to discover the optimal tree 

structure, and then choose the node that yields the greatest gain, which is also the node 

with the fastest decline in the branching objective function, to discover the optimal tree 

structure. When the gain of this node falls below a certain threshold, the tree's growth is 

stopped. 

 

Proposed Method: MI with Regularized Method 

 

Consider the data set k
D which has missing values in k variables and other are fully 

observed denoted as 
1 2

T

obs ,k k k rk
D (D , D , ..., D )= and

1 2

T

miss ,k r k r k nk
D (D , D , ..., D )

+ +
= respectively. 

From the k variables first r  components are missing values and other (n r)− components 

are observed values. The complement data set T

k obs miss
D (D k , D k )


 = . Then the observed 
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data are T

obs ,k obs ,k obs ,k miss ,k
D (D , D , ..., D )

 
= and the missing data are miss

D ; there are r  complete 

cases and (n r)− n–r incomplete cases with k
D missing. The imputation model reduces to 

1 1 1 1 1 1 1
f f θ)f θ| θ

miss , obs , miss , miss , obs , obs ,
(D D D (D |D , ( D D| , ) , )d

− −
=   

To obtain the posterior distribution of
miss ,1 obs ,1 -1

θ, f(D |D ,D ) we can posit and fit a regression 

model with 
obs ,k

D as the outcome variable and 
−obs , k

D as the set of predictors. We will use a 

linear regression model as an example just for illustration. 

=  + +
obs ,1 obs ,-1

D D
0

 

Where  
2 T

r 1 2 p-1
~ N(0,σ I ) and =(α , α ...,α )

 

 

Specifically, we need to fit the imputation model using r  complete cases. We denote by S

the set of variables in 
obs ,-k

D that are associated with
obs ,k

D , also known as the true active set, 

and denote by =S q  its cardinality, that is, the number of important variables for 

imputing k
D , and by 

obs,S
D the corresponding design matrix. Specifically, we define the 

active set as the subset of predictors that have been selected for impute 1
D , which is 

denoted by Ŝ , and the corresponding design matrix is denoted by ˆobs,S
D . To achieve 

model trimming when fitting the imputation model, we propose combining regularization 

techniques such as Lasso or ALasso. Both model trimming and parameter estimation are 

accomplished using a regularization technique that incorporates a bootstrap step to 

simulate random draws from a distribution. ˆobs , obs ,S
f(θ|D , D ).

1
. The algorithm for th

m

imputation in the MIRXG approach is as follows: 

 
Algorithm: Regularized Multiple Imputation with XGBoost (RMIXG)

 

missInput : The Missing Dataset(D ) of size n p;  

Imputations (M);No.of.  

obsD

       w.r.t. Missing Propotion.

K = Sorted indices of  Columns in
 

for i=1 to M do  

for j=1 to p do  



* * * * *

j 1 j-1 j+1 p

var_list[j] Regression

(D |D ,........,D ,D ,............,D )
 



Webology, Volume 19, Number 1, January, 2022 

3730                                                  http://www.webology.org 

1
if L then  

Use LASSO Regression and Estimate  

−
 

,
( | , )

L L obs obs 1
drawn from f D D  

 
−

 
,

( | , )
imp mis mis mis 1 L

D impute D  from f D D  

2
if  L  then  

Use Ridge regression and estimate  

 
−

 
,

( | , )
R R obs obs 1
drawn from f z Z  

 
−

 
,

( | , )
imp mis mis mis 1 R

D impute D  from f D D  

else  

Use Enet and estimate 
E
drawn  

−


,
( | , )

E obs obs 1
from f D D . 

 
−

 
,

( | , )
imp mis mis mis 1 E

D impute D from f D D  

end for  

end for  

=
( ) ( ) ( )( , , ......., )1 2 M

imp imp imp imp
D D D D  

bootstrap samples of
*

imp
D D  

while not  do  

for K in k do  

*
: , ,Separate the matrix D  into  x  B  b  

;
th

and A based on K  column  

: ;Train a XGBoost model  b  A  

*
;Predict D by feeding B into the trained model  

* *
;

th

obs
D new  update K column using predicted D  

end for  

;update   

end while  

*

obs
return the imputed matrix D new  
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Simulations 

 

The sample size in all simulations is set to n = 100., the outcome variable, and are the 

dependent variables 
1 2 p

D=(d ,d ,...,d ) in each simulated data set. Total 
k

d number of 

variables contains missing data, k=2 with p=200  and p=1000 . The data 
3 4 p

(d ,d ,...,d )  

generated using the distribution of type multivariate normal of considering mean=

p-1
(0,....,0)  and is the autocorrelation of type AR , varies from 0.2: 0.6. The final outcome 

variable y with respect to the D is described as: 

 

i 1 1 2 2 3 3 4 5
Y=β β D β D β D β D ε=1+ + + + + (11) 

 

Where i
β =1 , and random noise ε~N(0.6) .Also, it is observed that in study missing data 

with respect to the individual variable 
1

d is generated with combination of p and   using 

normal distribution with variance  =
1

2

d
1  and mean α

1d 0 S
Dμ =α + . From the mean, the S

denoted as the true active set (4, 20, 30, 40, 50, and 70). The resultant active set excluding 

with missing data is represented as
S 2 3 50 53
={d ,d ,d ,d }D

2 11 50 59
{d ,...,d ,d ,...,d } .

{ , ..., , , ..., , , ..., , , ..., , , ..., }
2 11 50 59 70 79 90 99 110 119

d d d d d d d d d d  is shown respectively. The study 

consider the noise proportion =0.3 to specify missingness in the respective variables for 

example in
1

d . Missing values generated 
k

d from a logistic model approximately 30% of 

1
d missing. 

 

Results 

 

The work in this paper, compared proposed method (i.e., MI-REG-XGB) with the other 

two imputation techniques (i.e., MI+XGB and MI+REG). However, to test results used 

following measures bias, mean square error (MSE) and β coverage rate of the 95% 

confidence interval (CR). The simulation results are evaluated by fixing the coefficients 

values β1,β2 =1. From the Tables 1–2 provides the results with respect to the correlation ρ 

with set of (0.2, 0.4 and 0.6). It is observed that from each data set with various 

imputation methods with auxiliary variable effect in terms of true active set                              

(i.e., q= 20,30,40 or 70) is compared in the study. The data set is generated with two 

dimensions (i.e., p= 400 and 2000) and fixed size samples (i.e., n=300) with the variable 

correlation. 
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Table 1 Simulation results for estimating n= 100 andq =30, 20 

ρ=0.2 

dimension Size Methods Bias MSE CR 

p=400 

MI 0.066 0.023 0.924 

MI-XGB 0.062 0.022 0.902 

MI-REG 0.050 0.017 0.948 

MI-REG-XGB 0.044 0.012 0.956 

p=2000 

MI 0.074 0.025 0.894 

MI+XGBOOST 0.066 0.024 0.862 

MI+REG 0.056 0.019 0.918 

MI+REG+ XGB 0.051 0.017 0.925 

ρ=0.4 

Sample Size Methods Bias MSE CR 

p=400 

MI 0.068 0.017 0.946 

MI+XGBOOST 0.059 0.018 0.932 

MI+REG 0.053 0.014 0.956 

MI+REG+ XGB 0.042 0.013 0.960 

p=2000 

MI 0.083 0.021 0.927 

MI+XGBOOST 0.075 0.020 0.916 

MI+REG 0.069 0.016 0.932 

MI+REG+ XGB 0.058 0.012 0.944 

ρ=0.6 

Sample Size Methods Bias MSE CR 

p=400 

MI 0.051 0.013 0.968 

MI+XGBOOST 0.056 0.014 0.946 

MI+REG 0.038 0.010 0.971 

MI+REG+ XGB 0.029 0.008 0.975 

p=2000 

MI 0.075 0.016 0.932 

MI+XGBOOST 0.062 0.018 0.916 

MI+REG 0.050 0.013 0.950 

MI+REG+ XGB 0.042 0.009 0.962 
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Table 2 Simulation results for estimating n= 100 and q = 70, 40 

c=0.2 

Sample Size Methods Bias MSE CR 

p=400 

MI 0.017 0.014 0.924 

MI+XGBOOST 0.002 0.015 0.927 

MI+REG 0.008 0.012 0.934 

MI+REG+ XGB 0.002 0.007 0.942 

p=2000 

MI 0.030 0.017 0.894 

MI+XGBOOST 0.020 0.018 0.904 

MI+REG 0.006 0.013 0.912 

MI+REG+ XGB 0.004 0.012 0.934 

c=0.4 

Sample Size Methods Bias MSE CR 

p=400 

MI 0.016 0.015 0.938 

MI+XGBOOST 0.014 0.014 0.930 

MI+REG 0.013 0.009 0.947 

MI+REG+ XGB 0.011 0.007 0.950 

p=2000 

MI 0.034 0.012 0.928 

MI+XGBOOST 0.027 0.011 0.918 

MI+REG 0.004 0.011 0.926 

MI+REG+ XGB 0.002 0.010 0.940 

c=0.6 

Sample Size Methods Bias MSE CR 

p=400 

MI 0.013 0.010 0.944 

MI+XGBOOST 0.010 0.010 0.936 

MI+REG 0.007 0.008 0.948 

MI+REG+ XGB 0.002 0.006 0.956 

p=2000 

MI 0.019 0.013 0.936 

MI+XGBOOST 0.014 0.012 0.926 

MI+REG 0.011 0.007 0.934 

MI+REG+ XGB 0.008 0.004 0.947 

 

Moreover, it is observed from the Table 1 and 2 produces least bias and close CR value 

results of proposed imputation methods with small true active set (i.e., q = 20 or 30) 

compared to the standard MI method. The performance of proposed MI+REG+XGB is 

promising compared to the MI+REG. However, the MI+XGBOOST method produces the 

mixed results in all possible cases. Also, it is observed that the MI + XGBOOST method 

produces smaller bias and MSE compared with the regularized MI. In all possible cases 

with effect of correlation c= 0.2, 0.4 or 0.6, proposed exhibits the better results in terms of 

bias and MSE.  
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Fig. 3 Simulation results for Bias estimating n= 100 and q = 70, 40 

 

From the results, it is observed that at high correlation cases, all regularized methods 

perform significantly good and produced negligible bias and small MSE by the proposed 

method. Tables 1 (q=70,40) and 2 (q=30,20) indicate similar patterns in comparisons 

amongst imputation approaches. MI+REG+ XGB has been found to outperform MI+REG 

The proposed method and MI with Regularized method exhibits promising results in 

terms of high correlation (i.e., c= 0.6) compared with medium and small correlation (i.e., 

c= 0.2and 0.4). However, in case of the normal MI method results were produced in 

mixed effect. The study, recommended that highly correlated variables fits imputation 

model better compared to the medium and small correlation. Also, proposed method 

summarizes that optimal selection of the true active set will retain better imputation 

results, compared to the performance of MI -REG and MI- XGB. Moreover, it is observed 

that, in case of data with different dimensions from p = 400 to 2000, existing method 

performance decreases respect to MSE, CRand bias.  
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Fig. 3 Simulation results for MSE estimating n= 100 and q = 70, 40 

 

However, proposed method deteriorates the performance very less compared to the 

standard imputation methods. From the Table 1 & 2, active set size (i.e., q=70, or 40), and 

active set size (i.e., q =30, or 20) exhibits related patterns on comparisons among the 

imputation methods. 

 

The proposed method MI+REG+ XGB is produces the overall better performance when 

compared to the standard methods MI, MI+REG and MI+XGBOOST. 

 

Also, it is shown that the case of q raises, imputation performance is with larger bias and 

MSE in case of MI+REG and MI+XGBOOST compared to the proposed method 

MI+REG+ XGB. 

 

Real-World Datasets 

 

The study also focused on the real datasets to compare the performance of imputation 

method. Among two data sets are high-dimensional and remain two data sets are small -

dimension with reasonable number of the features <20. The data sets which includes: 

 

• Delve Census 

• Housing 

• Mortgage 

• Nitrogen 

• Orange Juice 
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Delve Census: One of the high dimensional data sets is Delve census dataset with 104 

features, and it is available from the University of Toronto1 with sample size of 2048. 

Next, one is Nitrogen dataset, includes total of features 141 with sample size of 

1050various wavelengths. It is obtained from the Analytical Spectroscopy Research 

Group of the University of Kentucky.  

 

Housing: The Housing dataset, with sample size of 506 and features of 13 and is 

available from the UCI Machine Learning repository. This data set work for prediction of 

the houses with desired number of the features. 

 

Mortgage: The data set is Mortgage, composed of the number of features i.e., 16 and 

sample size 1049. The data set is available from the Federal Reserve Bank of Saint-Louis 

website. 

 

Nitrogen: This data set all time work for nitrogen content prediction from a grass sample. 

 

Orange Juice: The data set is Orange Juice, composed of the number of features i.e., 218 

and sample size700. The data set fit for doing high dimensional data analysis. 

 

Table 3 Real-World Datasets 

Dataset Names Sample Size No. of. Features 

Delve Census 2048 104 

Housing 506 13 

Mortgage 1049 16 

Nitrogen 141 105 

Orange Juice 218 700 

 

Table 4 Methods Names and Description 

ID Methods Names Methods Names 

M1 MI Multiple Imputation 

M2 MI+XGB Multiple Imputation with XGBoost 

M3 MI+REG Multiple Imputation with Regression 

M4 MI+REG+XGB Multiple Imputation with Regression and XGBoost 
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Table 5 MSE Performance of Imputation Methods on Real Datasets  

Datasets 
True Active Set (q)=5 

M1 M2 M3 M4 

Delve 2.3632 1.8987 1.8544 1.5656 

Nitrogen 1.5478 0.9734  0.9866  0.7634 

Housing 5.4314 4.5762 4.4816 3.6643 

Mortgage 2.1533 1.3783 1.3487 0.9468 

Orange Juice 4.0621 3.2864 3.1906 2.7273 

Datasets 
True Active Set (q)=10 

M1 M2 M3 M4 

Delve 3.7864 2.3683 1.9331 1.5820 

Nitrogen 2.3751 1.0378 1.0109 0.8434 

Housing 6.2495 4.5308 4.2262 4.0344 

Mortgage 2.8293 1.5007 1.4647 1.0647 

Orange Juice 4.5638 2.7481 2.6631 2.2519 

Datasets 
True Active Set (q)=25  

M1 M2 M3 M4 

Delve 4.1347 2.8151 2.5482 2.1309 

Nitrogen 3.2765 2.1049 1.0573 0.9629 

Housing 5.7952 4.4594 3.8974 2.5932 

Mortgage 2.3213 1.5599 1.4385 1.2199 

Orange Juice 4.2864 3.7163 4.7836 3.3207 

 

Table 6 Coverage of 95% CI performance of Imputation Methods on Real Data sets 

Datasets 
True Active Set (q)=5  

M1 M2 M3 M4 

Delve 0.7256 0.886 0.904 0.922 

Nitrogen 0.8695 0.905 0.924 0.942 

Housing 0.8842 0.917 0.936 0.954 

Mortgage 0.7392 0.860 0.878 0.895 

Orange Juice 0.8523 0.912 0.936 0.951 

Datasets 
True Active Set (q)=10 

M1 M2 M3 M4 

Delve 0.8542 0.906 0.915 0.924 

Nitrogen 0.8984 0.913 0.922 0.931 

Housing 0.9031 0.928 0.937 0.946 

Mortgage 0.8274 0.895 0.904 0.913 

Orange Juice 0.8760 0.929 0.948 0.966 

Datasets 
True Active Set (q)=25  

M1 M2 M3 M4 

Delve 0.8472 0.899 0.912 0.926 

Nitrogen 0.9214 0.933 0.947 0.961 

Housing 0.8951 0.905 0.919 0.932 

Mortgage 0.9102 0.934 0.948 0.962 

Orange Juice 0.9237 0.946 0.967 0.985 
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from Table 4 and 5, shows results of real data sets, also proposed method shows low bias 

and reasonable CR comparable with regular methods the MI+REG and MI+XGBOOST 

methods. Proposed tends to produce greater performance in terms of bias and MSE when 

compared to all genuine active sets, and this is especially noticeable when the coefficients 

of c are 0, 0.2, 0.4, and 0.6. As long as the correlation between the variables is high, all 

regularized approaches perform reasonably well, with all of the methods proposed 

demonstrating low bias and tiny MSE. Regularized and suggested algorithms perform 

significantly better when c= 0.6 than when q= 10 or 25, but MI produces slightly low 

values. Also, it is observed that variables with highly correlated produces, adequate 

information for imputation, resulting in enhanced performance of MI REG and MI+REG+ 

XGB. 

 
Fig. 4 Simulation results of MSE for real datasets MSE with True Active Set (q)=5,10,25 

 

As q increases, each imputation method's performance degrades, resulting in increased 

biases and mean square errors (MSE), as illustrated in Figure. This degradation is 

significantly greater with MI+REG and MI+XGBOOST than it is with MI+REG+ XGB. 

 

Conclusion 

 

The work in this paper extends multiple imputations in terms of regularization and 

boosting for general missing data. The result of proposed method shows better 

performance with respect to measures of bias, RMSE and CR. In case of basic method 

MI+REG, shows large bias and MSE. However, the method MI+XGBOOST is 
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composition of MI with boosting raises performance with reasonable bias and smaller 

MSE. Moreover, it is observed that As long as the correlation between the variables is 

high, all regularized approaches perform reasonably well, with all of the methods 

proposed demonstrating low bias and tiny MSE. Also study focused on retrieving active 

subset for imputation strategy optimized true set leads to better results. The simulation 

and real study applied on all imputation strategies. Moreover, the proposed method 

dominates all existing methods with negligible bias and MSE.  
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