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Abstract 

Model-based testing, structural testing, temporal testing, mutation testing, regression testing, 

exception testing, integration testing, interaction testing, and configuration testing are all 

applications of Search Based Software Engineering (SBSE). SBSE study attempts to use 

metaheuristic search techniques, genetic algorithms, and other methods to convert human- 

centered software engineering problems into machine-based search problems. This article 

examines the software testing future's potential possibilities by describing numerous Search 

Based Software Testing methodologies, analyzing research trends in this field, and investigating 

the software testing future's likely possibilities. This article examines Search Based Software 

Testing (SBST) as well as other modern computing disciplines that seamlessly overlap with 

SBST. The challenges that arise with the application of various approaches are also discussed in 

the study. 
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Introduction 

Traditional software engineering optimization and testing methodologies have become a time-

consuming process in recent years. The test data should be restructured as combinatorial 

optimization problems in order to speed up this procedure. This topic has been discussed and 

investigated in a variety of software development life cycle (SDLC) (Albalawi & Maashi, 2021) 

areas, which includes optimization of requirements, maintenance and refactoring of software 

code, optimization of test case, and debugging. (Bullnheimer et al., n.d.) define metaheuristic 

search to be a flexible parent process for obtaining solutions with high-quality in a fast and 

efficient manner. This is done by 
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monitoring and enhancing the subordinate heuristics operations. At each reiteration, this 

approach can handle single (incomplete or complete) solutions as well as sets of solutions. Low 

or high level techniques, a construction methodology, or simple local searches are examples of 

dependent heuristics. Metaheuristic algorithms are sometimes referred to as optimization 

algorithms or search based techniques whenever deployed to software engineering challenges, 

giving rise to Search Based Software Engineering (SBSE) (Harman & Jones, 2001). 

 

Strategy that is one step removed from reality when trying to apply search-based optimization to 

physical engineering components: rather than the artifact itself, optimizing a simulation or 

representation of it. This also contributes to further potential inaccuracy and expense as the 

fitness calculated by this method is not the final product fitness. 

 

In the context of testing, these approaches are known as Search-Based Software Testing (SBST) 

(Marculescu et al., 2012). The purpose of this paper is to provide an overview of recent trends 

in the use of search-based techniques to generate test sequences. A domain- specific software 

testing solution should ideally combine good software testing practices with domain knowledge 

and experience in application-specific quality assurance procedures and regulations. SBST has 

been proposed and validated for a variety of applications. 

 

Highlights of this paper: 

 

• Understanding SBSE. 

• Definition of SBST and its background. 

• Major approaches used to resolve the problem in SBST domain. 

• Reviewing the Literature given in SBST. 

 

The remaining of the paper is structured as follows. Section II includes an introduction of SBST 

definitions as well as a few of the most widely applied search algorithms in SBST test case 

development. This portion is again divided into two subsection as Evolutionary Test and 

Optimization Techniques which consist of five major search techniques. An overview of the 

method of conducting the survey, and some of the issues in implementation is given is Section 

Ⅲ. Section 0 gives a synopsis of the paper and concludes the survey. 

Background 

The use of random or guided search techniques, such as hill climbing and genetic computations, 

to solve problems in software testing, verification, and approval is known as Search-Based 

Software Testing (SBST) (Ben Zayed & Maashi, 2021). Search-based methods are becoming 

more popular in programming testing, verification, and approval. They are especially useful in 

the generation of test data. Random search, local search (Mcminn et al., n.d.) (e.g. hill climbing, 

simulated annealing, and tabu search), evolutionary algorithms (Gupta et al., 2016) (e.g. genetic 

algorithms, evolution strategies, and genetic programming), ant colony optimization, and 

particle swarm optimization can be used to solve software testing problems as well as 
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confirmation and validation space. Other common modern software testing concepts include 

real-time testing, model-based testing, testing of service-oriented architectures, interface testing, 

test case prioritization, and data-driven test generation. 

 

(Marculescu et al., 2012) has defined SBST as a cyclic process as shown in the Figure1 which 

consisting of following steps. 

 

• Initialization- To initiate, a population of candidate solutions is generated. This is 

frequently done at random, but more advanced techniques can also be used. 

• Fitness Function- Each candidate solution in the population is evaluated using a fitness 

function. The fitness function assigns a numerical value to each candidate solution and 

allows for the comparison of complex candidates. 

• Selection- For the next generation, a subset of the original population of candidate 

solutions is chosen. The selection prioritizes candidate solutions with higher fitness, but 

other candidates may be chosen as well. 

• Population Generation- The chosen candidates will serve as the foundation for the 

formation of a new generation. This is accomplished through the use of genetic operators. 

Mutation and crossover are two examples of such genetic operators. A candidate solution 

is mutated when a random modification is made to it. Crossover entailed combining 

existing candidate solutions to create new ones. 

 

A test case or a set of test data could be a single candidate solution for SBST. The genetic 

algorithm will select test cases that dominate the quality criteria of the fitness function. Over 

several generations, the overall fitness of the candidate population is expected to improve. 
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Figure 1 The basic idea of SBST using an example of a population-based genetic algorithm 

 

1. Evolutionary Testing 

In evolutionary testing, meta-heuristic search techniques are utilized to produce test cases. 

Evolutionary Testing (Paper & Studies, 2015) (Figure 2) is a subset of Search Based Testing in 

which an Evolutionary Algorithm is used to direct the query. The ultimate aim of this test has 

been transformed into an optimization complication. The search space is defined by the input 

domain of the test object. The test object scans the search space for test data that satisfies the 

specified test goal. A numerical representation of the test objective is required for this search. 

The objective functions that can be used to evaluate the test data generated are defined using 

this numerical representation. Depending on the test purpose, several heuristic functions for 

evaluating test data emerge. Because the software is not linear, converting test objectives to 

optimization problems usually results in convoluted, broken, and non-linear search spaces (if-

statements, loops, and so on). As a result, neighbourhood search tactics (such as hill climbing) 

are out of the question. Meta-heuristic search methods include evolutionary algorithms, 

simulated annealing, and tabu search. Evolutionary Strategies (EAs) are fantastic optimization 

algorithms for software testing. 

 

 

Figure 2 The structural overview of Evolutionary Testing 

 

1. Optimization Techniques 

In SBST, this research examines the most commonly used optimization techniques, such as 

Simulated annealing, Ant colony optimization, Genetic algorithm, Tabu search, and Particle 

swarm optimization. 

 

i. Simulated Annealing 

Local searches are performed using simulated annealing (SA). It takes a sample from the full 

domain and uses combination to change the arrangement in different ways. Simulated annealing 

5719                                                                http://www.webology.org 



Webology (ISSN: 1735-188X) 

Volume 19, Number 1, 2022  

 

selects x1 as the value for the solution x, as well as the solution with the lowest cost (or 

objective) function E. The relative and desirability of different options are defined by cost 

functions. The cost function and the fitness function respectively, represent the processes of 

minimizing and maximizing the objective function. 

 

ii. Tabu Search 

The Tabu search (TS) algorithm is really a metaheuristic technique for solving combinatorial 

optimization issues like the travelling salesman problem (TSP). In this scenario, a local or 

neighbourhood search process is utilized to shift from solution s to solution s' in the vicinity of s 

until a stop requirement is reached. Tabu search enhances the neighbourhood design of each 

solution as the search advances by evaluating portions of the search space that might otherwise 

be unexplored by the local search technique. 

 

iii. Genetic Algorithm 

Genetic algorithms (GAs) (Maashi et al., 2020) are a sort of evolutionary algorithm that 

simulates scientific processes (such as SA), particularly the fertility and mutation processes in 

genetics, as well as natural selection. GAs analyse and prioritize the attributes of a variety of 

solutions using the fitness function (called "genes"). The solutions are measured in each 

generation to discover which are the "fittest." A subset of the population is chosen at each 

generation to reproduce the next generation of solutions in order to create diversity in the gene 

pool. To proceed, a crossover operator is applied to the selected parents to generate the child 

solution(s). The crossover operator is implemented differently depending on the algorithm, but 

in general, for the generation of an offspring, selections from each parent are moulded. The 

second step is mutation, which occurs after the child solution is created (s). Again, the 

implementation of the mutation is determined by the GA that was written. This mutation can be 

utilized to preserve diversity in solution selection while also avoiding convergence by injecting 

random modifications into the solution. After a subset of the child solutions has been mutated, the 

newly generated solutions will be stored into the gene pool. The algorithm now calculates the 

fitness of all new solutions and rearranges them in relation to the total set of solutions. A 

population size is often selected to guarantee that the weakest solutions are wiped out of the gene 

pool with each generation. This cycle is repeated until the stop condition is satisfied. 

 

iv. Ant Colony Optimization 

Ant colony optimization (ACO) (Dorigo & Blum, 2005) is a probability-based computation 

problem-solving algorithm that generates solutions by traversing a graph containing various 

system states. In software testing, ACO is used to generate test sequences. Stigmergy is defined 

as indirect communication between members of a population through contact with their 

surroundings, and ACO is founded on this principle. Stigmergy is an example of ant interaction 

during the foraging phase: ants communicate with each other indirectly by leaving pheromone 

trails on the ground, which influence other ants' decision-making. Similarly, the method takes a 

control flow graph as input and explores the nodes to discover the best pathways. For ACO 

implementation, the problem is represented as a graph with possible stops as nodes and possible 

paths as edges. The pheromone-depositing artificial ants are now travelling across these 
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pathways. A random path is picked if there is equal or no pheromone; otherwise, the road with 

the most "pheromone" is chosen because it is the shortest. The process is directed toward 

positive feedback as a result of its autocatalytic behaviour. Pheromones are laid and then 

disappear after a set length of time, which helps to avoid local optimal solution convergence. 

 

 
 

i. Particle Swarm Optimization 

In the framework of the swarm intelligence paradigm, particle swarm optimization (PSO) is a 

relatively new optimization technique. It's a meta-heuristics technique to problem optimization 

that improves candidate solutions iteratively. The most typical application of PSO is to solve 

problems with solutions that can be described as a points in an n-dimensional space. A particle is 

the term used in PSO to describe a probable solution. Throughout this space, a number of 

particles are launched at random. The present position, velocity, and Pbest position of each 

particle are all known. Pbest is the most recent evaluation of a person's personal best position. 

Gbest, the worldwide best position earned by all of its members, is also included. It's a simple 

method that works in a variety of situations. Only a few steps make up the PSO algorithm, 

which are repeated until a terminating condition is fulfilled. The steps are given below: 

 

1. Individuals' present position and velocity are used to initiate the population. 

2. Individual particle fitness is evaluated (Pbest). 

3. Keeping track of an individual's highest level of fitness (Gbest). 

4. Velocity modification based on Pbest and Gbest location. 

5. The particle position is being updated. 

 

The first stage in PSO is to initialize the particle velocity and its current position. In this 

situation, the particle is in two-dimensional space. A function is used to calculate the particle's 

fitness value. Update the particle's x and y positions to reflect its personal best position if the 

particle's fitness is higher than its previous value. The particle's global best position is also 

updated when the value is larger than Gbest position. The process is repeated until the stop 

criteria have been met or the optimal option has been discovered. 

Pusedocode for ACO algorithm: 

Initialize: Trail 

Do While (Criteria for halting the process were not met) 

//Cycle Loop 

Do Until(A TOUR is completed by each ant) 

// Tour Loop 

Local Trail Updates 

End Do 

Analyze Tours Global Trail 

Updates 

End Do 

5721                                                                http://www.webology.org 



Webology (ISSN: 1735-188X) 

Volume 19, Number 1, 2022  

 

 

 
Figure 3 The flow chart Of Particle Swarm Optimization algorithm  

 

Review on Related Works 

Researchers' attention has inevitably been drawn to SBST as the scope of SBSE has grown. In 

recent years, there has been a spike in SBST, particularly in methods for test data generation 

that matches a set of criteria. (Mcminn et al., n.d.) provides an evaluation of SBST creation, 

demonstrating the use of search-based methodologies for Grey Box testing, White Box testing, 

Black Box testing, and nonfunctional characteristic validation. SBST can be implemented using 

both white box and black box methodologies. 
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Table 1 The use of five key metaheuristic methodologies in SBST domain research to solve 

diverse problems 

  

Author 

 

Technique 
Problems 

Addresse

d 

 

Applied Models 

Data 

Sets 

Used in 

Verification 

Metrics/ 

Compariso

n 

techniques 

 

 

 

1 

 

 

(Waeselync

k et al., 

2007) 

 

 

Simulate

d 

Annealin

g (SA) 

Test Data 

Generation, 

safety 

critical 

property, 

testing, 

verification 

 

 

SA, 

landscape 

concept 

Two 

calendar 

& boiler 

problem, 

Quadratic 

assignment 

Diameter, 

auto- 

correlatio

n, 

generation rate 

of better 

solution

s 

 

2 
(Lin & 

Yeh, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic 

Algorith

m (GA) 

Deficiency of 

former test 

case 

generators 

GA + Path 

Testing 

Algorith

m 

Test case to 

examine 

the target 

path 

Target paths, 

fitness 

function 

3 
(Miller et al., 

2006) 

Automatic test 

data generation 

GA + Test Data 

Generation 

Six distinct 

programs 

GADGET 

technique 

 

 

4 

 

(Gupta et 

al., 2016) 

 

Optimized 

software 

testing 

 

 

GA 

Random 

numbers 

generated 

by 

code 

 

Fitness 

functio

n 

 

5 
(Babamir 

et al., n.d.) 

Automated data 

collection for 

structural 

tests 

 

GA 
Min-max 

algorithms 

Time 

order 

decline 

 

 

 

 

6 

 

 

 

(Pachaur

i, 2011) 

 

 

Automation 

of the test 

case in java 

programs 

unit testing 

 

 

GA, Java 

modeling 

language 

(JML) 

Java 

framework 

JGAP, 

Java’s 

software 

Soda- 

vending 

machine 

 

 

 

Branch 

coverag

e 

 

 

7 

 

(Alshraide

h et al., 

2013) 

Test data 

fulfilling 

branch 

criteria 

 

 

GA 

Six real 

objects 

of 

Jordan 

Gaussian 

distribution, 

number 

creep 
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for testing university & average 
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   PL/SQL 

programs 

 hospital 

information 

coverage ratio 

 

8 
(Yu & 

Pang, 

2012) 

Optimizing 

software 

testing 

efficiency 

GA, Control 

flow graph 

based 

methodology 

 

 

- 

Critical 

path 

clusters 

 

 

9 

 

 

(Ramasam

y et al., 

2021) 

 

 

 

 

 

 

 

 

 

Ant Colony 

Optimizati

on (ACO) 

Rearrangemen

t of the test 

cases within 

time limit 

 

ACO + 

regression 

test 

prioritization 

 

8 test cases 

containing 

10 faults 

Fault coverage 

capacity, 

Average 

percentage of 

fault detected 

 

 

 

10 

 

 

(Sharma 

et al., 

2011) 

 

Test 

sequences in 

state 

transitions 

optimal paths 

 

ACO based 

tool efficient 

software 

coverage 

State 

diagram of 

class 

manageme

nt system 

state 

machine 

 

 

Compared 

with 

conventional 

PPTACO 

 

 

 

11 

 

 

(Mao et 

al., 2015) 

 

Generation 

of test data 

for 

structural 

testing 

 

 

ACO, local 

transfer & 

global transfer 

 

 

Eight 

significan

t 

programs 

Average 

coverage, 

success 

rate, 

average 

generation 

time, ANOVA 

 

12 
(Díaz et 

al., 2008) 

 

 

 

Tabu 

search 

(TS) 

Automatic 

structural 

software 

testing 

TS 

generator 

(TSGen) 

Differen

t C/C++ 

programs 

Random 

generato

r 

 

 

13 

 

(Miranda

, 2015) 

Generatin

g 

improved 

test-case 

sequences 

 

 

TS, GA 

Sample 

voter 

validation 

form 

 

 

GA 

 

 

14 

 

(Windisch 

et al., 2007) 

Particle 

Swarm 

Optimizati

on 

(PSO) 

 

Softwar

e testing 

PSO, 

DaimlerChrysl

er test system 

25 simple 

artificial 

& 13 

complicated 

 

Test case 

coverage, t-

test 
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Issues with Implementation 

Several challenges in SBST are guided by metaheuristic techniques, such as the production of 

automated test data and test case sequences. Until date, the true potential of any of these 

strategies for automatically generating test data for all sorts of software testing has not been fully 

identified. As a result, a more broad approach is required. 

 

One of the other problems that has appeared is that recently suggested approaches including PSO 

and TS do not work autonomously; rather, majority of them are hybridized with traditional 

methods such as GA in various methods to tackle current software engineering problems. As a 

result, these modern approaches must seek an independent and distinct strategy to be 

implemented in the software engineering domain. 

 

Third, different experts employed different performance comparison metrics to elucidate the 

efficacy of the suggested and enforced algorithm. C. Mao et al. (2015) chose success rate, 

average coverage, average time, and average generation as performance accounting indicators to 

compare their suggested approach with existing methods, whereas used branch coverage % as a 

strategy for comparison. As a result, standardized metrics should be used to evaluate and 

compare procedures so that a consistent result may be attained and followed. 

Conclusion 

In this article, we have decided to outline the numerous ways for automating the software 

testing phase of the SDLC. On the other hand, we've focused our efforts on evolutionary 

algorithms and search-based methods. The main goal is to see how search-based optimization 

methodologies might be utilized to automate software engineering solution evolution. When 

     industrial test 

objects 

 

 

 

15 

 

 

(Ahmed 

et al., 

2014) 

 

 

GUI 

functional 

testing 

 

Simplified 

swarm 

optimizatio

n 

 

‘Flight 

Reservatio

n’ case 

study 

Pair-wise 

independent 

combinatoria

l, Test vector 

generator 

 

 

16 

 

(Wang & 

Liu, 

2008) 

 

Regressio

n testing 

Hybridized 

particle swarm 

optimization 

(HPSO), GA 

 

 

Java‘s IDE 

 

 

Execution time 

 

17 
(R.Girgis 

et al., 

2015) 

Automation 

of test paths 

generation 

Genetical 

swarm 

optimization 

technique 

15 C# 

small 

programs 

PSO, GA 

for 

comparison 
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compared to state-of-the-art Software Testing methodologies, SBST has a variety of 

advantages, including less work and increased authenticity. 

 

The work gives a quick overview of what's been done so far, but it's not a complete picture of all 

that's been done so far. It will help greatly in exploring the difficulties that remain unsolved in 

the SBSE field especially in SBST and, as a result, resolving those problems by delivering 

productive, systematic, and feasible solutions. It can take advantage of the capabilities of 

various current computing technologies, such as evolutionary computing approaches like 

Genetic Algorithms, SA, and so on. This paper also shows how the research community is 

becoming more interested in this extremely promising area of software testing. 
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