Performance Model of Islamic Azad University Staff Considering Intellectual Capital and Knowledge Management

Fattah Nazem*
Associate professor of Educational Administration, Department of Education, Roudehen Branch, Islamic Azad University, Roudehen, Iran.
E-mail: nazem@riauc.ac.ir

Sanaz Mazaheri
PhD of Educational Administration, Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran.

Mohammadhossein Amanihamedani
PhD of Educational Administration, Department of Education, Roudehen Branch, Islamic Azad University, Roudehen, Iran.

Received October 12, 2021; Accepted December 26, 2021
ISSN: 1735-188X

Abstract

This study aimed to develop the performance model of Islamic Azad University staff considering intellectual capital and knowledge management. Regarding the type of research, this study is descriptive-correlational and applied in terms of research objectives. The statistical population encompassed two groups of managers and administrative staff working in comprehensive, extremely large-and large-sized branches of the Islamic Azad University in all 14 districts. Cochran's formula estimated the minimum sample size. In this study, 332 and 966 questionnaires were completed by the managers and staff from 96 selected university branches, respectively. In this regard, stepwise and stratified random sampling methods were used to select the required sample. The following questionnaires were used to collect the required data: (1) Employee Performance Questionnaire, developed based on Hersey and Goldsmith’s (1998) ACHIEVE model, consists of 48 items and some dimensions (namely power, role perception, support, motivation, assessment, credibility, and setting). Following a survey of experts and estimating the questionnaire’s validity and reliability, it was piloted on a group of samples and possible problems, ambiguities were then removed, and the questionnaire was finally distributed among the participants; (2) Salis and Jones’ (2002) Knowledge Management scale contains 42 items and some dimensions (namely leadership and management, teamwork and learning communities, knowledge sharing, knowledge creation, digital justice, ideas and missions, strategy, organizational culture, intellectual capital, and learning organization); and (3) Bontis’ (1998) Intellectual Capital Inventory
encompasses 42 items and three dimensions (namely human capital, structural capital, and relational capital). Structural equation modeling was also used to analyze the data. The findings indicated relationships between intellectual capital and performance and between knowledge management and performance in the Islamic Azad University. Moreover, the performance model of the Islamic Azad University staff based on intellectual capital and knowledge management had an acceptable fit.

Keywords

Employee Performance, Intellectual Capital, Knowledge Management.

Introduction

Universities are complex organizations primarily in charge of producing, using, and disseminating knowledge-oriented products and achievements. The most relevant resources of universities encompass a set of researchers, instructors, administrative staff, managers, students, and graduates, as well as their skills, abilities, habits, and relationships. This implies that intangible assets affect all activities and processes at universities. When used in higher education, intellectual capital (IC) can be assumed as non-physical resources, available internally and externally, to combine tangible resources such as financial and human resources to generate value for shareholders and gain a sustainable competitive advantage (Olarewaju & Msomi, 2021).

Machlup (1962) first coined the term ‘IC’ to highlight the significance of public knowledge as a necessity for growth and development. In recent years, following the introduction of this term into the knowledge-oriented community, it has attracted the researchers and academics’ attention. IC is described as an intellectual principle set, illustrated, and utilized to produce valuable assets. In an exciting conceptualization, IC is defined as a combination of intangible resources and activities allowing organizations to convert a set of human, financial, and material resources into a system creating values for shareholders (Secundo et al., 2020). IC mainly contributes to creating value, thereby providing a competitive advantage for organizations in this knowledge economy era. This type of capital combines intangible assets that allow organizations to operate (Nadem et al., 2021). The term also refers to all knowledge in an organization to provide a competitive advantage (Andreeva et al., 2021).

At first glance, IC encompasses employees, managers, smart individuals, and shareholders’ activities in a value-creating organization. IC also contains a degree of "intellectual performance." Researchers consider IC as knowledge and relationships
converting into organizational performance (Mahmood & Mubarik, 2020). According to Bontis (1998), universities’ IC can be classified into three types of capital (namely human, structural, and relational), the combination of which allows universities to create values going beyond organizational boundaries and encompassing the whole ecosystem where they operate.

Human capital (HC) contains a set of knowledge, experiences, cognitive abilities, capabilities, and skills controlled by all human resources (i.e., professors, researchers, students, doctors, administrative staff, and managers).

Structural capital (SC) exhibits the organization’s explicit knowledge supported by the internal scientific and technical research production and management processes. SC is formulated in accordance with organizational procedures, governance principles, information systems, databases, innovations, intellectual property, and other technical resources.

Relational capital (RC) refers to a set of relationships, partnerships, collaborations, and networks between universities and external stakeholders, including private institutions, research centers, local, national, and transnational governments, nonprofit organizations, and the community. RC also encompasses external stakeholders’ perceptions, which form universities’ beliefs and backgrounds (Bontis, 1998).

IC reinforces creating wealth and assets on a large scale (Olarewaju & Msoni, 2021). Huang and Huang (2020) defined IC as the effective implementation of tacit and explicit knowledge. Many academics and experts have highlighted the critical role of knowledge as a key source of competitive advantage in modern organizations. The next society will be the society of knowledge, where knowledge, its primary resources, and knowledge workers will be dominant (Zouari & Dakhli, 2018).

Knowledge is an effective tool enhancing individuals' capacity and needs to help organizations in managing different procedures. Knowledge Management (KM) encompasses a hybrid approach to detecting, collecting, assessing, modifying, and sharing all information along with different databases, documents, policies, approaches, experiences, and unapproved expertise in individual works. Accordingly, shared knowledge resources are required to implement these practices to set activities to manage, regulate, and improve performance (Wu et al., 2019). KM is defined as a process throughout which knowledge is created, shared, and utilized. KM is partly a strategy to turn an organization's intellectual property and recorded information as well as its
members' talents into higher productivity, new values, and further competition. It also encompasses a technique to simplify the sharing process by distributing, creating, absorbing, and understanding knowledge (Kusumastuti et al., 2021).

Nowadays, KM has changed to a prominent approach to facilitating the flow of knowledge and information between the right parties at the right time. Knowledge is involved in all organizational functions; however, its detection, absorption, management, and reuse may be challenging. Accordingly, the role of KM is still critical. An organization's knowledge resources are located in different aspects, including knowledge and expertise bases and individuals’ minds, and they are distributed across the organization. The main challenge is how to collect and manage knowledge resources to provide added value to the organization (Watrobski, 2019). Since organizations can exploit their knowledge effectively to move towards creativity and innovation, they understand the significance of KM (Jasimuddin & Naqshbandi, 2017).

Sallis & Jones (2002) offered a useful knowledge management self-assessment checklist with scoring elements such as:

1. Vision and mission: It refers to having vision as a knowledge-based organization and sharing it with the stakeholders and the mission as the knowledge creator and translating it into practical strategies.
2. Strategy: It refers to developing modeled scenarios and applying them in the management.
3. Organizational culture: It refers to the different dimensions of culture including the creating, centralizing, sharing, and recognizing organizational culture as a key competence.
4. Intellectual capital: It includes recognizing the value of intellectual assets and codifying its tacit knowledge.
5. Learning organization: Under learning organization, organization should create continuous learning, define skills to create new knowledge, recognize EQ and its influences encourage creative thinking, and promote action learning both for individuals and teams.
6. Leadership and management: In leadership and management, organizations are required to have senior-management support, have knowledge leaders and managers with appropriate leadership styles, and develop strategies for promoting middle-managers.
7. Teamwork and learning communities: Under teamwork and learning communities, organization should encourage learning communities and knowledge teams, establish trust, and recognize the need for intellectual autonomy.

8. Sharing knowledge: It signifies that organizations ought to collect, record major organization events, and share new information, and understand competitors’ knowledge management system.

9. Knowledge creation: It requires the organizations to recognize new knowledge, those known as experts, and turn it into service.

10. Digital sophistication for the organization: In terms of digital sophistication, organizations are to develop technologies among its employees by clear technological architecture, enhancing its knowledge, and devising virtual collaborative systems and/or communities (Sallis and Jones, 2002).

Organizational performance (OP) is an assessment tool to evaluate the effectiveness of organizational management. It is a way to deliver value to shareholders and customers and coordinate organizations’ performance, effort, and capital to achieve organizational goals (Saeidi, Robles, Saeidi, & Zamora, 2021). OP is a prerequisite for organizational sustainability and success as such; the performance appraisal is expected to be critical to all organizations to evaluate the measures adopted by managers and organizations. To be more precise, performance appraisal provides organizations with an opportunity to receive appropriate feedback on the efficiency and effectiveness of their activities and efforts as such they can make more informed decisions. Considering the organization, Op encompasses customer service, cost management, productivity quality, and financial management performance, all of which can be objective or subjective in nature (Durst, Hintergger, & Zieba, 2019). OP reflects an organization’s potential to effectively achieve one’s goals, strategies, and resources. An organization’s potentials to realize and implement its programs by utilizing its resources effectively and efficiently indicate OP. An organization’s success mainly depends on its performance. In this regard, the focus of the organization's managers and researchers on performance is another critical factor in the OP achievement (Saeidi, Robles, Saeidi, & Zamora, 2021).

Hersey and Goldsmith (1980) isolated seven variables related to effective performance:

- Ability (Knowledge and skills): Ability refers to the follower's knowledge, experience, and skill;
- Clarity (understanding or role perception): Clarity refers to an understanding and acceptance of what to do, when to do, and how to do it;
Help (organizational support): Help refers to the organizational help, or support, that the follower needs to effectively complete the task;

Incentive (motivation or willingness): Incentive refers to the follower's task – relevant incentive;

Evaluation (coaching and performance feedback): Evaluation refers to informal day-to-day performance feedback as well as formal periodic reviews;

Validity (valid and legal personnel practices): Validity refers to appropriateness and legality of human resources decisions made by the manager;

Environment (environmental fit): Environment refers to the external factors that can influence performance even if the individual has all the ability, clarity, help, and incentive needed to do the job (Hersey, Blanchard & Johnson, 2001).

Methodology

Regarding the type of research, this study is descriptive-correlational and applied in terms of research objectives. The statistical population encompassed two groups of managers and administrative staff working in comprehensive, extremely large-and large-sized branches of the Islamic Azad University in all 14 districts. Cochran's formula estimated the minimum sample size. In this study, 332 and 966 questionnaires were completed by the managers and staff from 96 selected university branches, respectively.

The following questionnaires were used to collect the required data: (1) Employee Performance Questionnaire, developed based on Hersey and Goldsmith’s (1998) ACHIEVE model, consists of 48 items and some dimensions (namely power, role perception, support, motivation, assessment, credibility, and setting). Following a survey of experts and estimating the questionnaire’s validity and reliability, it was piloted on a group of samples and possible problems, ambiguities were then removed, and the questionnaire was finally distributed among the participants; (2) Salis and Jones’ (2002) Knowledge Management scale contains 42 items and some dimensions (namely leadership and management, teamwork and learning communities, knowledge sharing, knowledge creation, digital justice, ideas and missions, strategy, organizational culture, intellectual capital, and learning organization); and (3) Bontis’ (1998) Intellectual Capital Inventory encompasses 42 items and three dimensions (namely HC, SC, and RC).

Results

Descriptive (namely mean, mode, median, etc.) and analytical (namely path analysis method) statistics were used to answer the research questions. The assumptions of interval
variables, sample size adequacy, relationship linearity of variables, and non-collinearity of variables were met in the research model.

Regarding the experts’ gender, there were 1161 (60.9%) males and 673 (35.3%) females. In terms of work experience, 470 (24.7%), 460 (24.1%), and 674 (35.4%) individuals had <6, 6-10, and >10 years of experience.

Given that the values of the mode, median, and mean for performance are numerically close, the normal distribution is implied. The minimum, maximum, and total scores are 48 and 439, and 247821, respectively. As presented in Table 1, seven performance indicators have a normal distribution.

The mean score of performance is 170.68. Given the standard deviation of this variable, the performance scores are scattered about 28.61 around the mean. Accordingly, 95% of the participants received performance scores ≥142.07 and ≤199.29.

As shown in Table 2, the mean score of KM is 147.76. Given the standard deviation of this variable, the IC scores are scattered about 27.92 around the mean. Accordingly, 95% of the participants received performance scores ≥119.89 and ≤175.68.

According to Table 3, the mean score of IC is 176.11, and its standard deviation is about 25.39, around the mean.

Figure 1 represents the relationship between the dimensions of IC and KM (i.e., independent variables) with the performance dimensions (i.e., a dependent variable not different from the actual data pattern). The lambda values of the external latent variable for the IC dimensions were 3.32 for HC, 2.93 for SC, and 4.26 for RC, the aggregation of which results in the formation of IC with an impact factor of 0.40. In other words, 40% of the variation in the dependent variable (i.e., performance) is explained by a set of these indices, and other variables predict the remained variation. In this regard, RC explains the highest internal consistency of the latent external variable.

The lambda values of the external latent variable for the KM dimensions were 3.04 for leadership and management, 2.50 for teamwork and learning communities, 1.74 for knowledge sharing, 2.04 for knowledge creation, 2.26 for digital justice, 1.92 for ideas and missions, 2.72 for strategy, 3.32 for organizational culture, 2.93 for rational capital, and 4.26 for learning community, the aggregation of which results in the formation of performance with an impact factor of 0.40. In other words, 40% of the variation in the dependent variable (i.e., KM) is explained by a set of these indices, and other variables
predict the remained variation. In this regard, learning community and knowledge sharing explain the highest and the lowest internal consistency of the latent external variable, respectively.

The lambda values of the latent variable for the performance dimensions were 2.12 for power, 2.16 for role perception, 3.87 for support, 6.85 for motivation, 3.66 for assessment, 4.13 for credibility, and 3.01 for setting, the aggregation of which results in the formation of performance. In this regard, motivation and power explain the highest and the lowest internal consistency of the latent internal variable, respectively.

Since the model’s goodness fit index is 0.94, the model is well-fitted, indicating the direct effect of IC and KM on performance. As presented in Figure 1, the greatest direct effect can be described as the direct effect of RC as the IC dimension and the learning community as the KM dimension on motivation as the performance dimension.

\[
\text{KM dimensions (0.40) + IC dimensions (0.40) = Y (performance)}
\]

With an emphasis on the five goodness-of-fit indices, the fit of the developed model on the one hand and the experimental data, on the other hand can be highlighted. Accordingly, there is an acceptable fit between the structured model and the experimental data, representing the modeling of structural equations with emphasis on the relationship between IC and KM with performance. It is suggested that the proposed model is well-fitted since the Tucker-Louise non-normed fit index (0.92) and Bentler and Bonett's (1980) normed fit index (0.92) are > 0.90. Moreover, the Holter index (0.73) is > 0.70, indicating an acceptable fit. Furthermore, RMSE (0.05) is 0.05, indicating the acceptable fit of the research model.

Table 1 Distribution of central indices for performance and its dimensions

<table>
<thead>
<tr>
<th></th>
<th>Performance</th>
<th>Power</th>
<th>Role perception</th>
<th>Support</th>
<th>Motivation</th>
<th>Assessment</th>
<th>Credibility</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>170.68</td>
<td>22.85</td>
<td>22.52</td>
<td>20.75</td>
<td>33.78</td>
<td>29.38</td>
<td>20.11</td>
<td>20.64</td>
</tr>
<tr>
<td>Median</td>
<td>171.00</td>
<td>23.00</td>
<td>23.00</td>
<td>21.00</td>
<td>34.00</td>
<td>30.00</td>
<td>20.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Mode</td>
<td>192</td>
<td>24</td>
<td>23</td>
<td>19</td>
<td>40</td>
<td>32</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Skewness</td>
<td>.720</td>
<td>-.515</td>
<td>-.380</td>
<td>-.329</td>
<td>-.355</td>
<td>16.241</td>
<td>16.701</td>
<td>-.159</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>9.303</td>
<td>.402</td>
<td>.535</td>
<td>.800</td>
<td>.079</td>
<td>497.529</td>
<td>518.458</td>
<td>2.651</td>
</tr>
<tr>
<td>variation range</td>
<td>391</td>
<td>24</td>
<td>34</td>
<td>42</td>
<td>57</td>
<td>239</td>
<td>244</td>
<td>53</td>
</tr>
<tr>
<td>Minimum score</td>
<td>48</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Maximum score</td>
<td>439</td>
<td>30</td>
<td>40</td>
<td>48</td>
<td>67</td>
<td>247</td>
<td>250</td>
<td>59</td>
</tr>
<tr>
<td>Total score</td>
<td>247821</td>
<td>41327</td>
<td>40535</td>
<td>37127</td>
<td>58780</td>
<td>50909</td>
<td>35305</td>
<td>36036</td>
</tr>
</tbody>
</table>
Table 2 Distribution of central indices for KM and its dimensions

<table>
<thead>
<tr>
<th></th>
<th>Management Knowledge</th>
<th>Leadership and Management</th>
<th>Teamwork and Learning Communities</th>
<th>Sharing Knowledge</th>
<th>Knowledge Creation</th>
<th>Digital Justice</th>
<th>Ideas and Mission</th>
<th>Strategy</th>
<th>Organizational Culture</th>
<th>Organizational Capital</th>
<th>Learning Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>147.76</td>
<td>21.71</td>
<td>14.04</td>
<td>10.53</td>
<td>10.38</td>
<td>14.25</td>
<td>10.60</td>
<td>13.75</td>
<td>17.28</td>
<td>13.57</td>
<td>20.52</td>
</tr>
<tr>
<td>Median</td>
<td>153.00</td>
<td>22.00</td>
<td>14.00</td>
<td>11.00</td>
<td>11.00</td>
<td>15.00</td>
<td>11.00</td>
<td>14.00</td>
<td>18.00</td>
<td>14.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Mode</td>
<td>167</td>
<td>23</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Skewness</td>
<td>-.842</td>
<td>-.473</td>
<td>.992</td>
<td>.365</td>
<td>-.585</td>
<td>-.502</td>
<td>2.508</td>
<td>-.583</td>
<td>-.637</td>
<td>-.550</td>
<td>-.489</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>.549</td>
<td>.865</td>
<td>3.942</td>
<td>10.136</td>
<td>-.016</td>
<td>.577</td>
<td>50.51</td>
<td>-.006</td>
<td>1.38</td>
<td>-.302</td>
<td>.362</td>
</tr>
<tr>
<td>Variation range</td>
<td>164</td>
<td>38</td>
<td>39</td>
<td>38</td>
<td>17</td>
<td>29</td>
<td>56</td>
<td>16</td>
<td>22</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>Minimum score</td>
<td>46</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Maximum score</td>
<td>210</td>
<td>44</td>
<td>43</td>
<td>41</td>
<td>20</td>
<td>33</td>
<td>59</td>
<td>20</td>
<td>27</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Total score</td>
<td>208050</td>
<td>38956</td>
<td>25092</td>
<td>19233</td>
<td>18858</td>
<td>2604</td>
<td>19629</td>
<td>24604</td>
<td>30685</td>
<td>24502</td>
<td>36114</td>
</tr>
</tbody>
</table>

Table 3 Distribution of central indices for IC and its dimensions

<table>
<thead>
<tr>
<th></th>
<th>IC</th>
<th>HC</th>
<th>SC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>176.11</td>
<td>66.40</td>
<td>47.19</td>
<td>58.46</td>
</tr>
<tr>
<td>Median</td>
<td>179.00</td>
<td>67.00</td>
<td>48.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Mode</td>
<td>187</td>
<td>68</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>25.392</td>
<td>13.862</td>
<td>7.566</td>
<td>8.890</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.172</td>
<td>19.110</td>
<td>-.692</td>
<td>-.518</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>42.167</td>
<td>601.184</td>
<td>.700</td>
<td>.700</td>
</tr>
<tr>
<td>Variation range</td>
<td>496</td>
<td>478</td>
<td>50</td>
<td>64</td>
</tr>
<tr>
<td>Minimum score</td>
<td>77</td>
<td>23</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Maximum score</td>
<td>573</td>
<td>501</td>
<td>66</td>
<td>85</td>
</tr>
<tr>
<td>Total score</td>
<td>249720</td>
<td>106772</td>
<td>77718</td>
<td>95881</td>
</tr>
</tbody>
</table>

Figure 1 Path analysis of IC and KM with performance
Table 4 Model fit indices

<table>
<thead>
<tr>
<th>Indices</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucker-Louise (non-normed fit index)</td>
<td>0.92</td>
<td>Excellent fit (>0.90)</td>
</tr>
<tr>
<td>Bentler and Bonett's (1980) normed fit index (NFI)</td>
<td>0.92</td>
<td>Excellent fit (>0.90)</td>
</tr>
<tr>
<td>Holter</td>
<td>0.73</td>
<td>Excellent fit (>0.70)</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.05</td>
<td>Excellent fit (≤0.05)</td>
</tr>
<tr>
<td>GFI</td>
<td>0.94</td>
<td>Excellent fit (>0.90)</td>
</tr>
</tbody>
</table>

Discussion

The data analysis revealed a relationship between IC and performance in the Islamic Azad University. In this regard, IC maintains and directs value-creating relationships and interactions. The IC values encompass material values and those created by the usability of products and services created by organizations (practical), general benefits provided to society (social), and their effects on future generations (Stability). The concept ‘value’ encompasses economic benefit and social and environmental values (Secundo et al., 2020). Organizations seeking sustainable competitive advantage should consider the organization’s IC as its individual knowledge since, according to the results, IC improves performance in an organization such as the university. This issue is consistent with findings reported by Sardo (2018), indicating the impact of IC on performance.

According to Bontis and Alexander (2009), RC is the knowledge embedded in an organization's relationships with its customers and suppliers. The findings revealed that this factor as one of the IC dimensions has the greatest impact (4.26) on performance compared to the other KM dimensions. Since RC mediates the IC process and is a determining factor in converting IC into market value and ultimately the organization’s business function, the academic system should pay special attention to approaches such as accountability, effective communication with stakeholders, and their satisfaction.

Further, the effect of HC on performance was 3.32. HC refers to a combination of individuals’ knowledge, skills, and experiences in an organization (Diez, 2020). It allows human resources to be considered as an innovation and development source in organizations (Lopez and Cuartas, 2020). Given the significance of HC in promoting growth, productivity, and performance in the university and in accordance with Sardo’s (2018) studies suggesting that HC interaction improves organizational performance, valuing efficient human resources and investing and focusing on improving human resources’ efficiency of this huge system would be an appropriate prescription to reduce any error and non-efficient use of human resources.
In this study, the effect of the SC dimension on performance was 2.93. SC points to the non-human reserves of organizational knowledge, the key role of which is to establish connections and integration between organizational resources and communications (Roos & Roos, 2018). Regarding the effect of SC on performance, since organizational prosperity and performance improvement largely depends on SC, exploiting participatory and team-oriented structures in universities and new technologies and creating organizational culture encouraging knowledge retention and transfer improves performance in the academic system.

The other finding of this study documented a relationship between KM and performance in the Islamic Azad University. KM and organizing such knowledge is one of the effective tools in an organization seeking survival progress and excellence under changing conditions (Stylianou and Savva, 2016). In its operational form, KM refers to a combination of leadership, interpersonal interactions, organizational culture, and information technology, which are intertwined with a particular complexity and none of which can provide an effective KM program independently (Bhatt, 2020). KM has positive effects on organizations. The research findings have confirmed that KM activities in educational settings improve their educational programs and the relationship among employees, learners, and managers (Worasinchai & Ribiere, 2019). The present study reached the same findings, in line with those reported by Mardani (2018) and Igbal (2018), suggesting a relationship between KM and performance.

The findings showed that the effect (4.26) of the learning community on performance exceeded the effects of other KM aspects. Learning Community, as one of the main KM dimensions, refers to an organization actively creating, acquiring, and transferring knowledge and changing its behavior based on new knowledge and insights (Eslamiyeh, 2014). In this regard, since the learning community is based on learning culture and its consequent behavior changes, it can have positive effects on staff performance and increase the human resources’ abilities, motivation, and inclination.

As the other KM dimension, OC has an impact on performance (3.32). It acts as the members’ common idea in an organization, distinguishing them from other organizations (Seyedi & Izadi, 2013). It affects all organizational aspects, as Moghimi and Astavar (2015) noted the effects of culture on organizational performance. Accordingly, an organization such as the Islamic Azad University can find appropriate ways to improve organizational performance by gaining sufficient knowledge and awareness about OC.
In this study, the effects of leadership and management, rational capital, strategy, teamwork, and learning communities on performance were 3.04, 2.93, 2.72, 2.50, respectively. As terms interchangeably used in the literature and as the main pillar of the organization, leadership and management affect human resources’ performance since motivation and morale can decrease or increase their performance. In this era called the age of rationality, where the most prominent symbol of rationality is critique and change, rational capital affects OP. In this regard, rationality and rational logic, also emphasized in organizational and management theories, provided appropriate grounds for making organizational decisions to increase human resources’ performance in terms of motivation, role perception, and support. The KM strategies are of paramount importance for all organizational positions, and there should be a balance between KM strategies and employees’ tasks to promote organizational performance to lower high costs on knowledge production and transfer and increase organizational efficiency (Seyed Naghavi & Sohrabi, 2014). In their study, Elyasi et al. (2016) highlighted the effect of strategy on performance. Their finding supported the result obtained in this study. Teamwork leading to the formation of learning communities refers to a process in which the members’ potentials are developed and aligned as such, the outcomes are what everyone really wants. According to the findings, teamwork and learning communities have a positive effect on performance. Organizations such as universities are expected to institutionalize teamwork and encourage human resources in a similar vein.

As the other KM dimensions, digital justice, knowledge creation, ideas, and mission, knowledge sharing have effects as much as 2.26, 2.04, 1.92, and 1.74 on performance, respectively. In this regard, it should be noted that using technologies in an organization leads to further information storage and better organizational performance. These findings were also confirmed Emami and Nemanian’s (2015) study.

Conclusion

Accordingly, the stronger the technology-related infrastructure at universities, the higher the achievement of knowledge goals. Knowledge creation (i.e., processing existing knowledge) produces knowledge resulting from knowledge selection, acquisition, or production. Knowledge sharing provides the necessary facilities for issuing and informing specialized organizational knowledge. Ideas and missions also refer to an organization’s visions and horizons). These factors increase performance in an organization as such exploiting KM in universities, as a scientific institution affecting the other sectors of society are of paramount significance and a remarkable advantage.
References

SeyedNaghavi M and Sohrabi, Sh (2014). The model of knowledge management strategies tailored to human resource management tasks and types of jobs (studied by Tehran municipality). General management research, 7(26), 87-63.

Watrobiski J (2019). Towards knowledge Handling in Sustainable Management Domain. 23rd international conference on knowledge- Based and intelligent information & engineering systems.
