
Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

4284                                                                http://www.webology.org 

 

 

 

 

Detection Of Code Clones In Open Source Software Using 

Proposed Generalized Template 
 

 

 

Ms. Harpreet Kaur1* 

 
1Department of Computer Engineering, Punjabi University, Patiala, INDIA. 

 

 

Abstract 

The objective of current research work is to identify Function-level clones with lesser time and space 

complexity along with increased accuracy. A generalized template has been proposed on the basis of 

reserved keywords, object creation, and built-in-functions that Java Language exhibits. The presented 

methodology has been verified on an open source project Jhot Draw, which is purely a Java based freely 

available Drawing Framework. The advantage of the proposed template is that it gives a short 

intermediate form of the source code, which leads to signature generation for extracted functions in 

reduced time and space. It also leads to minimum false positives. The results have been compared with 

the available literature. The schema provided will help in building repositories of functions because 

functions are the most reusable part of any software.  

 

Keywords: Granularity; Template; Function Clones; Signature; Complexity; 

1. INTRODUCTION 

Copying code fragments and reusability of code (known as "Code Cloning") possesses many positive and 

negative impact on software development. In relation to software reuse, the prominent advantage of 

cloning is that it is the simplest way to faster development of software. It provides quick start to the 

development team, and a faster solution to the problem. But from a viewpoint of program analysis, if any 

bug propagates in reusable-code, it will produce error-prone code clones and will cost more maintenance 

effort. Code fragments that are copied for development purposes are customized according to the 

requirement by the developers. Therefore, code fragments are generally differently evolved from the 

original fragments. And it generates gaps between the original code fragments and the copied code 

fragments. In order to detect code clones appropriately, it is of utmost importance to detect these gaps. 

Detection of gapped clones is necessary to better understand clones and the software systems. This issue 

can only be managed by providing totally new re-build framework. [1].Granularity plays an important 

role in detection of clones. Granularity varies from coarse-grained to fine-grained level. Clones 

carry important domain knowledge, and that knowledge can only be accessed by identifying clones at a 

particular level of granularity. Existing Tools and Techniques to detect clones, each operates at a different 

level of granularity such as character-level, statement level, function (method) level, file level etc. Larger 

the granularity, fewer will be the clones and will lead faster searching process, ands of course, it will 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4285                                                                http://www.webology.org 

 

provide some meaningful information because long text possesses some meaning. Keeping the conceptin 

mind, the research carried out in this paper focuses on function/method level clone detection from source 

code, because function/method possesses maximum functionality of the software. A general example of 

function clones is shown in table 1 below. 

 

Table 1: General Example of Function/Method level clones 

Original Function A Function A1 Function A2 Function A3 

Intprint Token( ) 

Inta,i; 

Long int b; 

While (is number(b)) 

{ if (a==token_gen) 

System. out. 

println(“token 

generated”) 

i++; 

return i; 

} 

Intprint Token( ) 

Inta,i; 

Long int b; 

While (is number(b)) 

{ if (a==token_gen) 

System.o ut. 

println(“token 

generated”) 

i++; 

return i; 

} 

Intprint Token( ) 

Intx,j; 

Long int y; 

While (is number(y)) 

{ if (x==token_gen) 

System. 

Out .println(“token 

generated”); 

j++; 

return j; 

} 

Intprint Token( ) 

Intx,j; 

Char d; 

Long int y; 

While (is number(y)) 

{ if (x==token_gen) 

System.out.println 

(“token generated”); 

If(d==’   ‘) 

System.out.println 

(“null”); 

j++; 

return j; 

} 

 

The emphasis here is to detect function-clones, but the big challenge is to propose a generalized template, 

which will serve as a basis for clone detection. A generalized intermediate transformation has been 

implemented in the proposed template using Java Language. Proposed template possesses some 

advantages as compared to literature such as it adopts a lightweight approach, which is free from parsing 

issues and relies only on representation of code fragments in the chosen intermediate format.  

 

Structure of the paper: Related Work is discussed in Section II. Section III introduces the overall 

methodology. Results and discussion have been discussed in Section IV. Section V discusses Threats to 

Validity.  Section VI concludes the research work. At last, some of the results have been shown in 

Appendix A. 

 

1.2 Contributions/ Highlights 

The primary contributions/highlights of this paper are: 1)An intermediate template has been proposed by 

adopting proposed encoding scheme for all extracted functions of the system under investigation 2) The 

proposed encoding scheme consumes less memory because it uses character-based nomenclature instead 

of numeric in contrast to literature 3) shortest encoding nomenclature limited to two characters has been 

adopted in contrast to literature. 4) Provide a schema for generating fingerprints based on function 

granularity. 5) Function level granularity has been chosen which leads to large portion and functionality 

coverage of software, rather than concentrating on short sentences 6) Function level similarity supports 

code refactoring, because it is easy to apply refactoring methods on functions.  

 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4286                                                                http://www.webology.org 

 

2. RELATED WORK 

An impressive measure of research has been directed for clone detection in software development [8-10]. 

Code clones emerge from exercises, such as copy-paste and adaptation. Identification and evaluation of 

software clones is vital due to its fundamental part in different development tasks: software maintenance, 

code quality analysis, plagiarism detection etc. and so forth [11]. It requires additional effort to upgrade a 

framework containing copied code parts. Research has demonstrated that 7– 23% of programming 

frameworks contain cloned code [9]. 

Numerous clone detection techniques have been proposed in the literature. Among various techniques in 

literature, Text-based techniques are lightweight and detect clones with a higher recall, but text based 

techniques are unable to detect suitable syntactic units. Token-based techniques are fast with high recall 

but possess low precision values. Moreover, parsing is required to compare ASTs of two code fragments, 

which will be more time consuming and will involve more effort. Parser-based techniques are capable 

enough to detect syntactic clones. However, these techniques give low recall values. Metric-based 

techniques detect syntactic as well as semantic clones with high precision values and also fast enough in 

processing. However, metric based techniques sometimes fail to detect some of the actual clones [11]. 

The other clone detection techniques i.e. Program Dependency Graph(where PDG is a directed graph 

which represents the dependencies among program elements in a program) based are more suitable to 

detect semantic clones. But sub-graph comparison in PDG techniques is very costly [12].  Moreover, 

PDG-based techniques takes longer time to detect code clones, because in these techniques source files 

are transformed into PDGs and the fraction of time is also devoted to comparing those PGDs [2]. The tool 

NICAD 3.4 identifies clones at function/ block level, but it possesses language-sensitive parsing which 

makes the detection process slow [13]. The tools CCF inder and NICAD are successful to detect the 

lexical clones (e.g., Type-1 and Type-2) and but are ineffective for detecting Type-3 clone in most of the 

cases [5]. AST (Abstract Syntax Tree) has been introduced in Deckard [36] tool and it measures the 

structure level similarity between two code fragments. Deckarduses structure information of software but 

it ignores lexical information of the source code, which might be helpful to detect Type-3 clones. There 

are researches which detect clones by comparing files. This detection of clones at coarse grain level 

makes the searching process faster, but it may miss fine grained level clones[14]. Software systems 

included in FreeBSD Ports Collection had been run on file level clone detection tool, FC Finder, which is 

developed by Sasaki et al. [15]. But file level cloning is not suitable to detect function/method level 

clones if their dependencies with other files are not wholly duplicated. Kamiya et al.[16] has proposed a 

clone detection code clone finder (CC finder) tool, which is based on token based approach. In this tool, 

there is limit to set minimum size of tokens which is 25. This limit is variable. It can create biasing issues 

to detect clones with variation in number of tokens. Baxter et al. [17] implemented a Clone DR tool based 

on AST (annotated parse tree)-techniques. Compiler generator generates AST of source code and then 

sub-trees are compared on the metrics computed by hash function. Sub-trees having similar source code 

are returned as clones. The AST generation slows down the clone detection process. Jean Mayr and et 

al.[35] implemented a method to detect clones using metric-based approach. This has been accomplished 

using a DATRIX tool framework by converting source code into some intermediate form. Patenaude et al. 

[18] used metrics based on method-level approach to extend the functionality of DATRIX tool to identify 

Java-clones. Clones are identified using some unusual characteristics of Java code fragments to find 

specific sections of a system that will require special attention. Roy et al. [37] recently developed Clone 

Works tool to detect large scale near miss clones. Clone Works detects clones with modified Jaccard 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4287                                                                http://www.webology.org 

 

Similarity. Clone Works gives user a full control over the processing to detect clones. This tool manages 

the issue of scalability and millions of lines of code at once. A pair-of-code-fragments is reported as 

clone-pair if similarity threshold is above 70%. Because Clone Works computes similarity on threshold 

basis, the reported results by this tool can possess biasness by varying threshold limit. Ragkhit wetsagul et 

al. [38] followed the approach of compilation/de-compilation to detect code clones in Java. It manages 

syntactic changes in the code and can be used as normalization. NICAD has been used to detect clones 

before de-compilation and after de-compilation in open source softwares, which helps to identify type-3 

clones. Strüber et al. [39]proposed a method to detect clones across graph-based model transformation 

languages. Potential use cases have been introduced in the context of constructive and analytical quality 

assurance. Customization of Con Qat has been done to satisfy all key requirements. Kodhai et al. [3] 

proposed an intermediate template to detect method-level clones combining textual and metric based 

approach. But single encoding scheme adopted for all data types leads to false positives. Further in 

literature, in-depth empirical study of cloning in social programming platform such as GitHub, has been 

performed by Gharehyazie et al. [40]. The author used Deckard tool, to identify replicas of code 

fragments in GitHub.  Another tool CLONE-HUNTRESS has been developed, it tracks changes to 

clones over time. Mondal et al. [41] used two tools [NiCad and CC Finder X to investigate different case 

studies with the motive to investigate the stability of type-1, type-2 and type-3 clones. The author used 8 

stability-assessment-metrics and concluded that cloned code is more unstable, because it is more prone to 

changes and errors. Type-3 clones are highly unstable, because type-3 clones covers main functionality of 

the software and easily adapted for reuse. The drawbacks of existing technique/tools and methods, 

provide a path to investigate a novel, hybrid or modified approach/template to identify clones. Junaid 

Akram [44] et al. Implemented s index-based features extraction technique (IBFET) to compare subject 

system against a large data set of source code to detect code clones at file granularity level. The approach 

followed is good enough to handle with big datasets of source code, but in IBFET approach, there is 

overhead and extra time is consumed to create index. Chunrong Fang [45] et al. Proposed a novel joint 

code representation for function level clone detection that applies fusion embedding techniques to learn 

hidden syntactic and semantic features of source codes. Caller-callee relationships as a functionality has 

been used to identify relationship between different functions and then a supervised deep learning model 

to detect functional code clones has been implemented. Kluban [46] et al. dealt with package-level 

vulnerability tracking and measurements. A vulnerability detection framework has been developed that 

uses vulnerable pattern recognition and textual similarity methods to detect vulnerable functions in real-

world projects. The main work done is concentrated on JavaScript security issues. 

3. RESEARCH METHODOLOGY  

In this research, a generalized template for Java programs has been proposed. This converts original 

source code into a common generalized intermediate pattern (it is suitable to all function bodies) and will 

serve as a uniform base for the programming constructs. Java follows function-based and classes-based 

programming development. Moreover, functions lead to code reusability and reduce the project code size. 

Therefore, to focus on ‘function’ granularity, none other than Java is suitable for this purpose.  

 

3.1 Input/ Data Concepts 

An Open Source Software Jhot Draw [19] has been considered for experimentation for the following 

reasons: 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4288                                                                http://www.webology.org 

 

1. Jhot Draw is an opensource software and it is widely used by many researchers [3, 4, 5, 6, and 7]. 

2. The key idea is to extract clones from Java-based source code, and Jhot Draw is purely a Java-

based platform. 

3. Jhot Draw is totally a function/method based development; therefore, this software is suitable for 

chosen ‘function-level’ granularity.  

One of the example of function clones present in Jhot Draw is represented in table 2 below. 

 

Table 2: Examples of Function Clones in JhotDraw5.2 

Function-Fragment1 

(FF1):Bring To Front 

Command_3.java 

public Boolean is Executable (  )  

{ 

return f View . selection Count 

(  )  > 0 ; 

} 

 

 

Function-Fragment2 

(FF2):UngroupCommand_3.java 

public Boolean is Executable (  )  

{ 

return f View . selection Count 

(  )  > 0 ; 

} 

 

Function-Fragment3 

(FF3):Trangle Figure_8.java 

public Boolean contains Po A ( A 

x ,  A y )  { 

return polygon (  )  . contains ( x ,  

y )  ;   } 

Function-Fragment4 

(FF4):AbstractConnector_8.java 

public Boolean contains Po A ( A 

x ,  A y )  { 

return owner (  )  . contains Po A 

( x ,  y )  ; 

} 

Function-Fragment5 

(FF5): 

AbstractConnector_2.java 

protected Drawing create 

Drawing() { 

return new Standard 

Drawing (); 

} 

 

 

Function-Fragment6 

(FF6): ArrowTip_6.java 

protected Standard Drawing 

View create Drawing 

View() { 

return new Standard 

Drawing View (this 410 

370);} 

Clone Pair (FF1, FF2): Type-1 Clone Clone Pair (FF3, FF4): Type-2 Clone Clone-Pair (FF5, FF6): Type-3 

Clone 

 

3.2 Overall Steps of Methodology 

All steps followed by proposed methodology have been described in Figure 1. The steps of 

methodology are: 

 

1. Input Source Code Files: Java source code files are selected as input. 

 

2. Pre-processing: Pre-processing of input source code is performed by removing comments, 

imported packages and extra white spaces. 

 

3. Function Identification: All function bodies are extracted from the pre-processed source code.  

As an example all function bodies extracted from AbstractTool.java are shown in figure 1. 

 

Table 3: Nomenclature for Keywords and Reserve Words 

Reserve Decoding Reserve Decoding Reserve Word Decoding Reserve Decoding 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4289                                                                http://www.webology.org 

 

Word Word Word 

abstract AT boolean BO assert AS break BR 

case CS char CR catch CH class CL 

continue CN do DO default DT double do 

enum EM final FI extends EX finally FY 

for FR if IF Goto GT implements IL 

instance 

of 
IO interface IR int 

IN 
long 

LG 

new NE private PT package PG protected Pr 

return RE static ST short SH strictfp SF 

switch ST this TH synchronized SC throw TH 

transient TT void VD try TY volatile VL 

byte BT float FT public PU while WL 

Const CT import IM super SP native NV 

else EL throws Th String St object Ob 

IO 

Exception 
IE    

 
 

 

 

4. Removal of Blank Functions: Blank functions are removed to filter the whole database. Deleting 

Blank-function bodies decreases the overburden of executing unnecessary Lines of Code (LOC). 

Encoding Scheme: All keywords and reserved words are encoded using encoding scheme 

presented in table 3. 

 

5. Uniform Intermediate Representation of Source Code (Proposed Template): Pre- processed 

source code is converted into a new template. In addition to pre-processing and formatting of 

source code, a generalized template conversion is used here. This converts original source code 

into a common generalized pattern and will serve as a uniform base for the programming 

constructs between the clone pairs of the same type. Figure 1 shows AbsractTool.java after pre-

processing, by deleting comments, header files etc. The file contains some blank function bodies: 

mouse Drag (), mouse Up (), mouse Move (), key Down (). These blank function bodies are 

filtered for further processing of the file. It further reduces processing database size as well as 

processing time. Rest of the functions:  public void activate(),public void deactivate(),  public 

void mouse Down(),public void mouse Drag(),public void mouse Up(),public void mouse 

Move(),public Drawing drawing(),public Drawing Editor editor() are extracted for clone 

detection. The encoding scheme is applied further to all keywords and reserve words. In the end, 

the generated template is reduced to a single sequence by removing spaces for less memory 

consumption and fast comparison. Another reason for choosing single sequence representation is 

that sometime number of spaces may vary in the same intermediate templates and it can lead to 

dissimilar signatures for same function bodies. 

6. The approach followed stores two parameters of the extracted function as a record for future 

reference: function name and file name to which that function belongs. After executing all 

processing steps, Proposed Template is generated as depicted in Figure 2.   

http://www.codejava.net/java-core/the-java-language/abstract-keyword
http://www.codejava.net/java-core/the-java-language/boolean-keyword
http://www.codejava.net/java-core/the-java-language/java-keyword-assert
http://www.codejava.net/java-core/the-java-language/break-keyword
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/char-keyword
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/class-keyword
http://www.codejava.net/java-core/the-java-language/continue-keyword
http://www.codejava.net/java-core/the-java-language/do-while-construct
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/double-keyword
http://www.codejava.net/java-core/the-java-language/enum-keyword
http://www.codejava.net/java-core/the-java-language/final-keyword
http://www.codejava.net/java-core/the-java-language/extends-keyword
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/for-keyword
http://www.codejava.net/java-core/the-java-language/if-else-construct
http://www.codejava.net/java-core/the-java-language/implements-keyword
http://www.codejava.net/java-core/the-java-language/instanceof-keyword
http://www.codejava.net/java-core/the-java-language/instanceof-keyword
http://www.codejava.net/java-core/the-java-language/interface-keyword
http://www.codejava.net/java-core/the-java-language/int-keyword
http://www.codejava.net/java-core/the-java-language/long-keyword
http://www.codejava.net/java-core/the-java-language/new-keyword
http://www.codejava.net/java-core/the-java-language/private-keyword
http://www.codejava.net/java-core/the-java-language/package-keyword
http://www.codejava.net/java-core/the-java-language/protected-keyword
http://www.codejava.net/java-core/the-java-language/return-keyword
http://www.codejava.net/java-core/the-java-language/java-keyword-static
http://www.codejava.net/java-core/the-java-language/short-keyword
http://www.codejava.net/java-core/the-java-language/java-keyword-strictfp
http://www.codejava.net/java-core/the-java-language/switch-case-construct
http://www.codejava.net/java-core/the-java-language/this-keyword
http://www.codejava.net/java-core/the-java-language/synchronized-keyword
http://www.codejava.net/java-core/the-java-language/throw-and-throws-keywords
http://codejava.net/java-core/the-java-language/transient-keyword
http://www.codejava.net/java-core/the-java-language/void-keyword
http://www.codejava.net/java-core/the-java-language/try-catch-finally-construct
http://www.codejava.net/java-core/the-java-language/volatile-keyword
http://www.codejava.net/java-core/the-java-language/byte-keyword
http://www.codejava.net/java-core/the-java-language/float-keyword
http://www.codejava.net/java-core/the-java-language/public-keyword
http://www.codejava.net/java-core/the-java-language/do-while-construct
http://www.codejava.net/java-core/the-java-language/import-keyword
http://www.codejava.net/java-core/the-java-language/super-keyword
http://www.codejava.net/java-core/the-java-language/native-keyword
http://www.codejava.net/java-core/the-java-language/if-else-construct
http://www.codejava.net/java-core/the-java-language/throw-and-throws-keywords


Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4290                                                                http://www.webology.org 

 

 
 

Figure 1: Schematic Diagram of Proposed Methodology 

 

Source 

Code 

Files(Java) 

Pre-Processing 

(Comments, extra 

spaces and header 

filesremoval) 

Functions 

Extraction/ 

Identification 

All variable are 

replaced with 

‘#’ sign 

 

Encoding have been applied 

to Reserve Words and 

Keywords 

 

Removal of 

Blank Function 

Bodies 

(Reducesprocess

ingtime) 

 

Generalized 

Template is 

displayed as 

singlesequence 

Blank Function Bodies 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4291                                                                http://www.webology.org 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed Template 

 

3.2.1 Type-1 and Type-2 Identification using Proposed Template 

For Type1, as per definition of code clones, two fragments should be 100% similar. Therefore, if 

generated template of two function-bodies is 100% similar, it will form a Clone Pair of Type1.For 

Type2 clones, two functions will form a Clone Pair if changes are evolved over function identifiers, 

variable names, types etc. Therefore, a uniform intermediate pattern is proposed in which editing 

differences are minimized. Table 4 illustrates Type1 and Type2 clones. Clone Pair (CFx, CFy) 

represent Exact (Type1) clones. Clone-pair (CFm, CFn) represents Type2 clones, in which display 

Box() has been renamed to f poly. 

 

3.2.2 Type-3 Identification using Proposed Template 

In Type3 clones, both code fragments can share same variable names, can exhibit parameterized 

clones and also two fragments can vary in LOC(lines of code) with insertions, deletions or 

modification of code. The proposed method aims to discover a maximum pairing of matched 

functions, whether in the same class or in different classes. Table 5 illustrates Type-3 clones. Clone 

public Figure owner() { 

returnfOwner; 

} 
 

 

 
 

 

pu  #  #()  { 
re  #; 

} 

 
 

 

 
 

pu##(){re#;} 

 
 

 

 
 

 

 
public Rectangle displayBox() { 

return owner().displayBox(); 

} 
 

 

 
pu  #  #()  { 

re  #().#(); 

} 
 

 

 
 

 

 
pu##(){re#().#();} 

 

 
 

 

Reduced to single 
sequence leads to fast 

processing and less 

storage space 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4292                                                                http://www.webology.org 

 

pair (CF1,CF2) depicts Type-3 clone: Variable Drawing  has been renamed as Drawing View and also 

public void invoke Start()  has been modified by a mending invoke Start( $, $, $, drawing()). In clone 

pair (CF3, CF4) Type-3 clones:  Standard Drawing View()has been modified by adding (this 410 370) 

to it.  

 

Table 4: Template for Type1 and Type2 Clones 

Fragment No. Code Fragment Template Signature 

CFx public boolean is 

Executable() { 

return f View .selection 

Count()>0; 

} 

pubo  #()  { 

re  #.#()>#; 

} 
 

 

 

 

Same 

Signature 

Generated CFy public boolean is 

Executable () { 

return fView. Selection 

Count()>0;} 

pubo#() { 

re.#.#()>#;}  

      

CFm public Boolean contains 

Point(int x, int y) { 

return display 

Box().contains(x, y); } 

pubo  #(#)  { 

re  #().#(#,  #); 

} 

 

 

A small 

difference in 

Signature 

Generated 

(with only 

one extra ( ) 

in CFm) 

CFn public boolean contains 

Point(int x, int y) { 

return f Poly. contains(x, 

y); } 

pubo  #(#)  { 

re  #.#(#,  #);  } 

 

Table 5: Template for Type-3 Clones 

Fragment 

No 

Code Fragment Template Signature 

CF1 public void invoke Start ( int  # ,  int  # ,  

Drawing  # )  { } 

Puvo #(#,#,#) 

{ }//line1 

 

 

 

A large difference in 

Signature (Line1 and 

line2 are same. Line3 

i.e. # ( #,#,#.( )); has 

been inserted in CF2) 

(th #,#has been 

inserted in CF4. 

CF2 public void invoke Start ( int  # ,  int  # ,  

Drawing View #)  { 

invoke Start ( # ,  # ,  # . drawing (  )  )  ;    } 

Puvo #(#,#,#) //line2 

{ # 

( #,#,#.( ));}//line3 

CF3 protected Drawing create Drawing() { 

return new Standard Drawing();} 

Pr # ( ) { re ne # 

( ); } 

CF4 protected Standard Drawing View create 

Drawing View () { 

return new Standard Drawing View(this 410, 

370); 

} 

Pr # ( ) { re ne # ( th 

#,#); } 

 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4293                                                                http://www.webology.org 

 

4. RESULTS AND DISCUSSION 

The proposed approach has been demonstrated on different versions of Jhot Draw and has also been 

compared with different proposed templates in literature. 

 

4.1 Fundamental comparison of various tools/techniques with the proposed method 

Code Clone detection is a continuous process in software engineering. The motive of proposed work is 

to identify function-level-clones in source code with high speed and less memory consumption. No 

technique can be considered better until its quality or performance can be measured. Fundamental 

comparison of various tools/techniques with the proposed technique is shown in table 6, which aims to 

detect code clones in the source code. Clone detection tool PMD (http://www.PMD.sourceforge.net/) 

scans Java source code and detects duplicate code. PMD operates on the basis of threshold metric and 

allows setting the number of tokens to identify duplicated code. But the threshold here can be biased, 

because detected clones can vary according to threshold variation i.e. number of tokens [23]. Bauhaus 

(http://www.bauhaus-stuttgart.de/) provides support to identify reusable components of software, and 

estimation of change impact. The Bauhaus also discover same code blocks for: portions of identical 

code (Type-I), their variation with different variable names and identifiers (Type-II), and portions of 

similar code with added or removed statements (Type-III). In this research, current proposed template 

also detects these three types of clones but with the variation in granularity i.e. functions. Google Code 

Pro Analytix (https://developers.google.com/java-dev-tools/codepro/doc/) is used by Eclipse developers 

as a Java testing tool for improving software quality. It solves the purpose of code analysis, various 

metrics computations and similar code analysis. The tool offers various facilities:  (1) to search the code 

that can possibly bere factored, (2) to identify code containing remaining errors and (3) To identify 

similar portion of code. Current method is also capable to detect function level clones useful for 

refactoring purposes which is comparable to Code Pro [23]. Current proposed template does not depend 

upon threshold and compares whole function-body at a time.The work is in comparison with other clone 

detection tools and possesses an advantage of adopting threshold-free-approach which makes it free 

from any biasing and secondly function-granularity serves a basis to refactoring [23]. Shortest encoding 

scheme ever adopted in literature have been implemented here and it makes the approach capable of 

consuming less memory. 

 

Table 6: Fundamental Comparison with Recent and State-of-the-Art Methods 

Tool/Appro

ach 

Intermediate 

Representatio

n 

Supported 

Languages 

Method Granularity Types of Clones 

Detection 

NICAD 

[31] 

generic 

normalization 

template 

Java 

C 

text-based and 

abstract syntax 

tree-based 

Functions and 

Blocks [31] 

I, II, and III 

[33][34] 

Kodhai et 

al. /Clone 

Manager[3] 

White spaces, 

comments 

removed 

Data types and 

variable names 

are encoded 

Java 

C 

combination of 

textual 

comparison and 

metrics 

computation 

Function Body I, II, III and IV 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4294                                                                http://www.webology.org 

 

PMD[23] Tokens C, C++, Java, 

Jsp, Fortran, 

Php, Ruby 

string matches 

using Rabin-

Karp [32] 

String (25 

tokens 

composed 4-6 

LOC) 

I and II 

Bauhaus[23

] 

----------- C, C++, C#, 

Java, Ada 

Baxter et al.’s 

changes on AST 

[17] 

------- I, II, and III 

Google 

Code Pro 

Analytix 

------------ Java Undocumented 

relies on Java 

AST 

----- I, II, and III 

CC 

Finder[16] 

Tokens COBOL, Java, C 

and C++ 

Suffix-tree 

based on token 

matching 

Token I and II 

Clone Dr Syntax Tree COBOL, Java, C 

and C++ 

Abstract Syntax 

Tree (AST) 

Method 

 I, II, and III [33] 

Hamid 

Abdul et al. 

[20] 

Tokens Java Numeric 

Encoding 

Scheme 

(numeric values 

consumes more 

space) 

Token ------- 

CK-Roy 

[21] 

TXL 

Taxonomy 

Java 

C 

parsing based 

template 

(consumes extra 

time for 

parsing) 

Code Fragment Used for 

automating 

Precision and 

Recall 

A R, Haga 

H. Et al. 

[22] 

Tokens  
variables/identif

iers with 

‘$’(keywords 

and reserve 

words are not 

encoded) 

 I, II and III 

Hotta et al. 

[29] 

extract blocks 

using JDT by 

Parsing source 

code 

 
Parse source 

code to extract 

blocks using 

JDT 

 I and II 

Marcus & 

Maletic 

[26] 

 

comment 

removal and 

token 

regularization 

Mosaic 2.7/ C 
vector 

representation 

using LSI 

code segments, 

files 

high-level 

concept clones 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4295                                                                http://www.webology.org 

 

Basit & 

Jarzabek 

[27] 

Tokens Eclipse 

Graphical 

Editing 

Framework/Ecli

pse Visual 

Editor/ Java, 

Open J Graph/ 

Java J2ME 

Wireless Toolkit 

2.2/Java Pet 

Store 1.3.2/ Java 

frequent item-

set mining 

files, methods high-level 

concept clones 

Grant 

&Cordy 

[28] 

vector space 

representation 

Linux/ C 
independent 

component 

analysis 

methods, blocks Similar code 

fragments 

Rattan, 

Bhatia, and 

Singh [25] 

vector space 

representation 

Dns java/ Java 
principal 

component 

analysis and 

cosine 

similarity 

class diagram, 

class file, and 

methods 

Model Clones 

[44] indexing Hadoop and Map 

Reduce Divide and 

conquer 

technique to 

find similar 

features 

between 

different 

components 

File level Structural 

Clones 

[45] Fusion 

embedding 

technique 

Deep Neural 

Network Caller-Callee 

functionality to 

know 

relationship 

among 

functions 

Function/Metho

d 

 

Proposed 

Work 

Header files 

removal, 

comment 

removal, token 

regularization 

and 

function/metho

Rabin-Karp 

Algorithm/Java 

 

Intermediate 

Template using 

Character 

Encoding 

Scheme 

Function/Metho

d 

I, II and III 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4296                                                                http://www.webology.org 

 

d detection 

 

4.2 Comparison with some of the proposed templates in Literature 

In literature, various templates have been proposed for code clone detection [20, 3, 21, 16], which are 

closely comparable to our proposed template. Figure 3 shows various templates from literature proposed 

by different researchers. Here, proposed work has been compared with Hamid Abdul et al. [20], CK-Roy 

[21], Kodhai et al. [3] and A R, Haga H. Et al. [22].Hamid Abdul et al. [20] adopted numeric encoding 

scheme for all keywords and reserve words, hence consumes more memory space. In spite of this, 

character encoding should be adopted to reduce memory storage. CK ROY [21] proposed a parsing based 

template, it needs parsing phase to represent input as a parse tree for internal representation, which is a 

tedious task and takes more time for execution, so it further makes the process heavier. Kodhai Et al. [3] 

have proposed an intermediate template for clone detection, in which, whether the data type is int, char or 

float, all are decoded with ‘DAT’, therefore it can rather create more false positives (in terms of Type1 

clones) when explored manually as depicted in Figure 4. For example, In Figure 4, code fragments CFa 

and CFb when transformed in internal format, both lead to the same intermediate template (Templatea and 

Templateb are equivalent). It is regarded as Type1 clones. But when explored manually, it shows Type2 

clones. Thus, it leads to false positive. Ami R, Haga H. [22] replaced all variables/identifiers with ‘$’ sign. 

In this method encoding scheme for data types ‘int’, reserve words: return, if, else, public etc has not been 

adopted. Therefore, the proposed template consumes more space. Rather, the operation can be optimized 

using some short encodings for the same to reduce execution time and space. In our proposed work, 

generated template has been converted into single sequence which makes the process lighter and reduces 

processing time. Hence, the proposed method shows improved time and space complexity as compared to 

already existing methods.  



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4297                                                                http://www.webology.org 

 

 

 

 
 

 

 

 

 

   
 

Figure 3: Already Proposed Templates in Literature 
Hamid Abdul et al.  [20] CK Roy  [21] 

Templates Proposed in 

Literature 

Haga H. et al. [22] Kodhai et al. [3] 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4298                                                                http://www.webology.org 

 

 

4.3 Comparison on the basis of Performance Parameters 

Some other parameters have also been computed to analyze the performance of proposed template such as: 

Precision, Recall, and False-Positives, with varying percentage of detected functions. Results have been 

shown at various performance levels: 2%, 4%, 6% and 10 % as illustrated in Figure 5a and 5b. 

 
 

Figure 5a: The plot shows precision and recall values at various similarity percentage of detected 

functions. 

Precision and Recall have been calculated from the candidate code fragments whose fingerprints are 

involved in a collision template and in-depth analysis has been performed manually. The precision and 

recall rate reported by experimentation are quite promising. 

 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4299                                                                http://www.webology.org 

 

 
Figure 5b: The plot illustrates the number of false-positives detected at varying percentage similarity of 

detected functions 

 

Figure 6 shows number of clone pairs at varying percentage levels of detected functions: 2%, 4%, 6% and 

10 %.Maximum clone pairs are detected to be of type2 clones as depicted in Figure 8. Execution time of 

proposed method has also been measured. Fuyao et al. [24] demonstrated modified Rabin-Karp using 

bitwise operations. The author has reported results in terms of the varying size of alphabets; likewise our 

results have also been reported in terms of varying percentage of detected functions in software as 

depicted by table 7. 

 

Table 7: Results with varying percentage of functions 

 Type-1(2, 4,6,10 %) Type-2(2, 4,6,10 %) Type-3(2, 4,6,10 %) 

Clone 

size(LOC) 

2-3 5-6 6-18 

Clone pairs 2% 4% 6% 10% 2% 4% 6% 10% 2% 4% 6% 10% 

- 3 7 9 1 7 8 11 2 3 5 8 

 

 
 

Figure 6: clone pairs on various levels 2%, 4%, 6% and 10 % 

Regression analysis has also been shown between Function-Percentage from total software w.r.t Precision. 

Regression curve in Figure 7 describes the scenario of the rise in precision as the rise in the percentage of 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4300                                                                http://www.webology.org 

 

functions, the results here show accuracy at 95 % confidence level, it means deviations in accuracy occurs 

in only 5% cases, hence the results are very much promising. 

 

 
 

Figure 7: Regression Curve 

 

5. THREATS TO VALIDITY 

This current work exhibits some of the following threats to validity. 

▪ First, an internal threat to validity is that the functions reported similar to each may not be clones 

according to other developers, because different people would have different 

perception/understanding of the same lines of code. 

▪ Second, work has not been proceeded to detect semantic clones among functions. It is hard to 

avoid subjectiveness while evaluating open source softwares because of lack of template 

benchmark. 

▪ Comparison of recall has not been explored, because to check recall in this higher number of 

functions/methods is practically not possible by considering only our own perception. It would 

need the time of developer and his acknowledgement to inspect the sampled functions. 

▪ Also, the underlying design and structure of the clone detection tool has a great impact on the 

clone detection results. Variation in minimum token length by some tools leads to different results. 

We evaluated various parameters based on a prior study and our demonstration with existing clone 

detection tools. 

6. CONCLUSIONS 

1. An efficient and faster approach has been proposed to detect function-level clones based on 

tokenized method.  

2. A novel template has been proposed which is faster, because it is free from parsing issues. 

Moreover, character encoding has been adopted which makes the execution thread lighter and 

faster. 

3. The work shows shortest encoding scheme ever adopted as compared to literature which shows 

novelty. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4301                                                                http://www.webology.org 

 

4.  The proposed scheme also exhibit less space complexity because of single sequential 

representation and adopted character encoding scheme (character consumes less space as 

compared to other data types). 

5. Proposed work is capable to detect exact as well as gapped function-level clones.  

6. Detection of false positives has also been verified, which shows improved precision.  

7. Function-Level clone detection has been performed, which his beneficial to detect reusability in 

the software and would serve as a basis for refactoring. 

REFERENCES 

1. Davey N, Barson P, Field S, Frank R, Tansley D. , “The development of a software clone 

detector”, International Journal of Applied Software Technology, pp. 219-236, 1995. 

2. Murakami H, Hotta K, Higo Y, Igaki H, Kusumoto S., “Gapped code clone detection with 

lightweight source code analysis”, IEEE 21st International Conference on Program 

Comprehension (ICPC), pp. 93-102, 2013. 

3. Kodhai E, Kanmani S., “Method-level code clone detection through LWH (Light Weight Hybrid) 

approach”, Journal of Software Engineering Research and Development, Vol. 2, no.1, 2014. 

4. Ó Cinnéide M, Tratt L, Harman M, Counsell S, Hemati Moghadam I., “Experimental assessment 

of software metrics using automated refactoring”, Proceedings of the ACM-IEEE international 

symposium on Empirical Software Engineering and Measurement, pp. 49-58, 2012. 

5. Chen X, Wang AY, Tempero E., “A replication and reproduction of code clone detection studies”, 

Proceedings of the Thirty-Seventh Australasian Computer Science Conference, pp. 105-114, 2014  

6. Mubarak-Ali AF, Syed-Mohamad SM, Sulaiman S., “Enhancing Generic Pipeline Model for Code 

Clone Detection using Divide and Conquer Approach”,  Int. Arab J. Inf. Technol., Vol. 12, no. 5, 

pp 510-517, 2015. 

7. White, Martin, et al. "Deep learning code fragments for code clone detection." Proceedings of the 

31st IEEE/ACM International Conference on Automated Software Engineering. ACM, pp. 87-98, 

Aug 25, 2018. 

8. Li, Z., Sun, J., “An iterative, metric space-based software clone detection approach”, 2nd 

International Conference on Software Engineering and Data Mining (SEDM), pp. 111–116, 2010. 

9. Abd-El-Hafiz, S.K., “ A metrics-based data mining approach for software clone detection”, IEEE 

36th Annals Computer Software and Applications Conference (COMPSAC), pp. 35–41, 2012. 

10. Saha, R.K., Roy, C.K., Schneider, K.A., Perry, D.E., “Understanding the evolution of type-3 

clones: an exploratory study”, Proceedings of the 10th Working Conference on Mining Software 

Repositories, pp. 139–148. IEEE Press, Piscataway, 2013. 

11. Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E., “Comparison and evaluation of clone 

detection tools”, IEEE Transactions on software engineering, Sep; ol. 33, no. 9, 2009. 

12. Koschke R, Falke R, Frenzel P., “Clone detection using abstract syntax suffix trees”, Reverse 

Engineering, WCRE'06, 13th Working Conference, pp. 253-262, 2006. 

13. Cordy Nicad 3.4 The NiCad Clone Detector, 2011 

14. Ishihara, T., Hotta, K., Higo, Y., Igaki, H. and Kusumoto, S., “Inter-project functional clone 

detection toward building libraries-an empirical study on 13,000 projects”, IEEE conference on 

Reverse Engineering (WCRE, pp. 387-391, 2012. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4302                                                                http://www.webology.org 

 

15. Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding File Clones in FreeBSD Ports 

Collection,” in Proc. of the 7th Working Conference on Mining Software Repositories, pp. 102–

105, 2010. 

16. Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro Inoue., “CC Finder: a multilinguistic token-

based code clone detection system for large scale source code”, IEEE Transactions on Software 

Engineering, Vol.  28, no. 7, pp. 654-670, 2002. 

17. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using abstract 

syntax trees,” in Proceedings of the IEEE International Conference on Software Maintenance 

(ICSM ’98), pp. 368–377, 1998. 

18. Patenaude, J.F., Merlo, E., Dagenais, M. and Laguë, B., “Extending software quality assessment 

techniques to java systems”, IEEE  Seventh International Workshop on Program Comprehension, 

pp. 49-56, 1999. 

19. The J Hot Draw: http://www.jhotdraw.org/ (June 2006). 

20. Basit, Hamid Abdul, and Stan Jarzabek., "Efficient token based clone detection with flexible 

tokenization." ACM Proceedings of the the 6th joint meeting of the European software 

engineering conference and the ACM SIGSOFT Symposium on The foundations of software 

engineering, pp: 513-516, 2007. 

21. Roy CK., “Detection and Analysis of near-miss software clones”, IEEE International Conference 

on Software Maintenance, ICSM, pp. 447-450, 2009. 

22. Ami R, Haga H., “Code Clone Detection Method Based on the Combination of Tree-Based and 

Token-Based Methods”, Journal of Software Engineering and Applications, 10:13, p.891, 2017. 

23. Research Article “Software Clone Detection and Refactoring” Hindawi Publishing Corporation,  

ISRN Software Engineering, Article ID 129437, 8 pages, 2013. 

24. Zhao F, Liu Q., “A string matching algorithm based on efficient hash function”, IEEE 

International Conference on Information Engineering and Computer Science, pp. 1-4, 2009. 

25. Dhavleesh Rattan, Rajesh Bhatia, Maninider S., “Detecting High-Level Similarities in Source 

Code and Beyond”, International Journal of Energy, Information, and Communications, Vol. 6, no. 

2, pp. 1-16, 2015. 

26. Marcus and J. I. Maletic, “Identification of high-level concept clones in source code”, Proceedings 

of 16th IEEE International Conference on Automated Software Engineering (ASE'01), pp. 107-

114, 2001. 

27. H. A. Basit and S. Jarzabek, “A Data mining approach for detecting higher-level clones in 

software”, IEEE Transactions on Software, vol. 35, no. 4, pp. 497-514, 2009. 

28. S. Grant and J. R. Cordy, “Vector Space Analysis of Software Clones”, Proceedings of 17th IEEE 

International Conference on Program Comprehension, pp. 233- 237, 2009 

29. Hotta, Keisuke, et al. How Accurate Is Coarse-grained Clone Detection?: Comparision with Fine-

grained Detectors. Electronic Communications of the EASST, 2014. 

30. Roy CK, Cordy JR., “NICAD: Accurate detection of near-miss intentional clones using flexible 

pretty-printing and code normalization”, The 16th IEEE International Conference on Program 

Comprehension, ICPC, pp. 172-181, 2008. 

31. Cordy, J.R. and Roy, C.K., “The NiCad clone detector” ,IEEE 19th International Conference 

on  Program Comprehension (ICPC), pp. 219-220, 2011. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

 

4303                                                                http://www.webology.org 

 

32. R. M. Karp and M. O. Rabin, “Efficient randomized pattern matching algorithms,” IBM Journal 

of Research and Development, vol. 31, no. 2, pp. 249–260, 1985. 

33. Kaur, H. and Maini, R., Performance Evaluation and Comparative Analysis of Code-Clone-

Detection Techniques and Tools, IJAST (SERSC), 2017. 

34. Sheneamer, A. and Kalita, J. A survey of software clone detection techniques. International 

Journal of Computer Applications, 137(10), pp.1-21, 2016. 

35. Mayrand J, Leblanc C, Merlo E., “Experiment on the Automatic Detection of Function Clones in 

a Software System Using Metrics”, In International Conference on Software Maintenance(icsm) 

1996 Nov 4 (Vol. 96, p. 244). 

36. Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. DECKARD: scal- ´ able 

and accurate tree-based detection of code clones. In Proceedings of the 29th International 

Conference on Software Engineering, pages 96–105, Minneapolis, MN, USA, 2007. 

37. Roy et al. Clone Works 

38. Svajlenko J, Roy CK. Fast and flexible large-scale clone detection with Clone Works. In Software 

Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference on 2017 May 

20 (pp. 27-30). IEEE. 

39. Strüber D, Plöger J, Acreţoaie V. Clone detection for graph-based model transformation languages. 

In International Conference on Theory and Practice of Model Transformations 2016 Jul 4 (pp. 

191-206). Springer, Cham. 

40. Gharehyazie M, Ray B, Keshani M, Zavosht MS, Heydarnoori A, Filkov V. Cross-project code 

clones in GitHub. Empirical Software Engineering. 2018:1-36. 

41. Mondal M, Rahman MS, Roy CK, Schneider KA. Is cloned code really stable?. Empirical 

Software Engineering. 2018 Apr 1;23(2):693-770. 

42. Roy, C.K. and Cordy, J.R., 2018, March. Benchmarks for software clone detection: A ten-year 

retrospective. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and 

Reengineering (SANER) (pp. 26-37). IEEE. 

43. White, M., Tufano, M., Vendome, C. and Poshyvanyk, D., 2016, August. Deep learning code 

fragments for code clone detection. In Proceedings of the 31st IEEE/ACM International 

Conference on Automated Software Engineering (pp. 87-98). ACM 

44. Akram, J., Mumtaz, M. and Luo, P., 2020. IBFET: Index‐based features extraction technique for 

scalable code clone detection at file level granularity. Software: Practice and Experience, 50(1), 

pp.22-46. 

45. Fang, C., Liu, Z., Shi, Y., Huang, J. and Shi, Q., 2020, July. Functional code clone detection with 

syntax and semantics fusion learning. In Proceedings of the 29th ACM SIGSOFT International 

Symposium on Software Testing and Analysis (pp. 516-527). 

46. Kluban, M., Mannan, M. and Youssef, A., 2022. On Measuring Vulnerable JavaScript Functions 

in the Wild. 

 

 


